Shield: a Middleware to Tolerate CPU Transient
Faults in Multicore Architectures

Mohamed Mohamedin
Virginia Tech
mohamedin@vt.edu

Abstract—Multicore architectures are increasingly becoming
prone to transient faults. In this paper we present Shield, a
middleware to provide transactional applications with resiliency
to those faults that can happen anytime during the execution
of a processor but do not cause any hardware interruption.
Shield is inspired by the state machine replication approach,
where computational resources are partitioned, the shared state
is fully replicated, and requests are executed by all partitions
in the same order. Our results using the Tilera reveal limited
overhead with respect to the non-fault-tolerant approaches on
most benchmarks, and an average performance gain of 1.54x
over traditional byzantine fault tolerance protocols.

I. INTRODUCTION

Data are precious and protecting data integrity is critical to
many applications. Multicore architectures form the current
technological trend and, in such systems, the problem of
tolerating data corruption is complex due to the nature of the
underlying hardware [1]. As an example, soft-errors [2] belong
to the category of hardware-related errors that are difficult to
detect or predict. Specifically, they are transient faults that may
happen anytime during the application execution. They are
caused by physical phenomena [1], e.g., electric noise, which
cannot be directly managed by designers. As a result, when a
soft-error occurs, the hardware is not affected by interruption,
but applications may behave incorrectly.

In this paper we focus on those soft-errors that occur inside
the processor (which we name CPU-TFAULTS). That is because
CPU-TFAULTs are random, hard to detect, and can corrupt
data — e.g., a CPU-TFAULT can cause a single bit to flip in
a CPU register due to the residual charge of a transistor,
which inverts its state. Most of the time, such an event is
likely to be unnoticed by applications because they do not use
that value (e.g., an unused register). However, sometimes, the
register can contain a memory pointer or a meaningful value.
In those cases, the application behavior can be unexpected. An
easy solution for recovering from transient faults is a simple
application-restart, but for those applications with stringent
reliability requirements, which form the focus of this paper, it
cannot be acceptable.

We propose Shield', a software middleware for tolerating
CPU-TFAULTs. Shield’s basic scheme is inspired by the state
machine replication approach (SMR) [4], where computational

A short version of this paper has been published in [3].
978-1-5386-1465-5/17/$31.00 (©2017 IEEE

Masoomeh Javidi Kishi
Lehigh University
maj717 @lehigh.edu

Roberto Palmieri
Lehigh University
palmieri @lehigh.edu

resources are partitioned, data are replicated across partitions,
and application requests are executed on all partitions follow-
ing the same (previously agreed) order. The goal of Shield is
to prevent any data stored in a processor register from being
propagated to the system’s main memory where the shared
state is kept, without being verified as free of corruption.
Shield is designed for applications where many threads act
on the same shared state and where the data integrity is
fundamental (in fact Shield finds its sweet spot on transactional
applications). A data corruption can let one thread crash or
affect the thread’s semantics. Roughly, if an application relies
on Shield, a CPU-TFAULT can still let some of its threads
crash, but it will not let the shared data be corrupted.

Shield does not protect threads’ execution outside trans-
actions, as well as the integrity of the operating system
because we consider it as an orthogonal problem, which can
be solved employing alternative solutions. As an example, the
functionality of the operating system can be protected against
CPU-TFAULTs using approaches like [5] or the application’s
execution can be made reliable by using [6]. However, both
these approaches care about avoiding service interruption and
none of them address the semantics of the application and its
data integrity. Shield guarantees that the shared state is not
undesirably corrupted by CPU-TFAULTS.

As in the SMR approach, Shield processes transactions in
the same order on all replicated states. This redundant execu-
tion isolates any possible propagation of incorrect transition to
the memory without being previously certified. The latter oper-
ation is performed by a voter, a software module that collects
the outcome of transactions and delivers the common response
(i.e., the majority of replies) to the application. The voting
outcome is also used for identifying corrupted computations,
and, if so, other correct states are exploited for overwriting the
broken parts of the memory. As the other software components
of Shield, also the voter is not assumed to be reliable. As we
will show later, its design allows it to be resilient to CPU-
TFAULTs. In order to guarantee limited overhead with respect
to the original execution, which is the performance goal of
our proposal, Shield reduces transaction latency by exploiting
parallelism and advanced hardware features (e.g., hardware
clock and message-passing links).

We implemented Shield in C++. We use in-memory trans-
actional applications for evaluating our proposal. Such appli-
cations are good candidates as they are typically deployed on

multicore architectures and do not use stable storage to log
their actions. Our evaluation focuses on a 36-core Tilera TILE-
Gx family board [7], which is a shared memory multicore
architecture based on message-passing. Results, using micro-
benchmarks and well-known transactional applications such as
TPC-C [8] and Vacation from the STAMP suite [9], reveal that
Shield ensures fault-tolerance with competitive performance
of non-fault-tolerant systems, without paying the cost (both
in terms of significant performance degradation and financial
cost) of deploying a distributed infrastructure.

Summarizing, the paper makes the following major contri-
butions: i) A novel total order protocol that exploits hardware
features to reduce the delivery latency; ii) A concurrency
control algorithm that provides in-order commit with a com-
parable performance with respect to the out-of-order commit
version; iii) A comprehensive evaluation study on hardware
message-passing-based shared memory architecture.

II. IS BYZANTINE FAULT TOLERANCE THE SOLUTION?

CPU-TFAULTs are transient faults, and that class of faults
belongs by itself to the category of Byzantine Faults (BF) [10].
A BF is an arbitrary fault that can generate incorrect re-
sponse or corrupt the system state. BFs include commission
and omission faults. Solutions to BF, named also Byzantine
Fault Tolerant (BFT) protocols (e.g., [11], [12]), are usually
designed for minimizing the assumptions on the correctness
and trustiness of components composing the execution envi-
ronment, as well as for being resilient to malicious behaviors.
Given that, the answer to the above question is clearly: yes,
BFT is a solution solving also CPU-TFAULTs but, as also
supported by our evaluation study, it is very “pricy”.

In fact, deploying a BFT solution would have an impact on
the system’s performance much higher than what is actually
needed for solving the problem of CPU-TFAULT. In addition,
BTF solutions often require a physical multi-node distributed
system to isolate nodes from each other and therefore avoid
the propagation of faults. However, replicating centralized
systems for tolerating faults results in significantly degraded
performance (e.g., 10-100x). That is primarily due to the
costs for remote synchronization and communication that
are incurred to ensure node consistency. Also, a distributed
architecture comprising of multicore nodes may not often be
cost-effective. BFT systems handle malicious client behavior
and unreliable networks that can reorder, drop, or corrupt
messages. In addition, most BFT solutions require 3f + 1
nodes to reach agreement and 2 f + 1 nodes for the transaction
execution in order to tolerate up to f faulty nodes [13]. Shield
assumes trusted clients and a reliable network infrastructure,
e.g., the bus and most message-passing architectures [7].

Shield is meant to be a software layer that can be plugged
into a classical centralized transactional system without de-
ploying a distributed infrastructure or substantially impacting
the performance of the original system. We believe that
adopting a BFT solution for solving the problem of CPU-
TFAULTs would be inaccurate because of the excessive nega-

tive performance penalty that the application has to undergo
without being actually able to exploit the solution as a whole.

III. SYSTEM & FAULT MODEL, AND ASSUMPTIONS

We consider a system based on the message-passing ab-
straction where a set of nodes, installed on the same physical
hardware, communicate with each other through a reliable
FIFO channel (e.g., the bus or the hardware message-passing
channel). We consider each node as a group of computing
cores on a multicore board. For the sake of clarity while
illustrating the proposed algorithms, we assume the presence
of a service providing a single monotonically increasing clock.
Some message-passing boards (e.g., Tilera [7]) are equipped
with such a service through special hardware extensions.

Application’s shared state is replicated such that each node
accesses its own copy. This way, storing a value from a CPU
register to a memory location does not interfere with the
work of other nodes, which prevents the propagation of a
possible fault to other nodes. To tolerate f CPU-TFAULTs,
Shield requires 2 f + 1 nodes so that a majority can be formed
and the voting procedure can take place.

Shield targets CPU-TFAULTSs, which are transient faults that
occur inside the processor. Shield does not prevent any value
corrupted by a CPU-TFAULT from being stored in memory.
Rather, it cares about those values that will actually affect
the shared state. As an example, if a node is affected by
a CPU-TFAULT, it can still write a corrupted value into its
private memory space, but it will never propagate that value
to the shared state seen by application threads. Also, as we
mentioned above, Shield does not protect threads’ execution
outside transactions, as well as the integrity of the operating
system because we consider it as an orthogonal problem,
which can be solved by employing alternative solutions.

Shield works on a single machine, thus it cannot tolerate
a crash or a permanent hardware failure of the machine.
Asynchronous checkpointing to a stable storage can be used
to tolerate such failures. In addition, Shield cannot tolerate
deterministic software bugs or incorrect application config-
urations. A deterministic bug will occur on all nodes and
generate the same results. This problem could be solved using
other techniques, like diversity (e.g., [12], [14]). However, if
the software bug is not deterministic, e.g., concurrency bugs
that happen on one node due to the particular schedule of
operations, Shield’s architecture is still able to prevent the
results generated from being propagated to the application.

IV. SHIELD
A. Overview

At high-level, Shield makes a transactional application
resilient to CPU-TFAULTs as follows. It logically partitions
computational resources into nodes. Each node is composed
of a subset of the available cores that co-operate for process-
ing transactions. We adhere to the state machine replication
approach [4] where transactions are firstly ordered in a de-
terministic manner across nodes and then processed by all

nodes. This way the shared state is kept consistent at every
node without any sharing.

There are several proposals that solve total order in systems
prone to faults (e.g., Paxos [15], Mencius [16], 1Paxos [17],
Caesar [18], M?2Paxos [19]) but none of them target explicitly
transient faults (such as CPU-TFAULTs) and are optimized
for deployments where there is an efficient clock-service and
communication channels are reliable. In this paper we propose
a total order protocol that takes advantage of the centralized
deployment and exploits the underlying hardware features to
reduce the delivery latency.

At a glance, our ordering protocol involves application
threads (because they are physically located together with all
other nodes) and it does not rely on a single component to
order (e.g., the sequencer). When a transaction is requested to
execute by an application thread, it is sent to all nodes and
other application threads, together with the current timestamp
taken from the clock-service. This timestamp represents a
tentative order for executing the transaction (which we name
tn-order) [20]. To determine its total order, a node must ensure
that it receives a request from each application thread with
a timestamp that is higher than the one just received. (For
this reason we said above that our ordering layer involves
application threads.) When a node receives a message from
all application threads, it can now safely determine the next
transaction to deliver and its total order. As we will show in
Section V, our ordering protocol can tolerate CPU-TFAULTS
also in the shared clock-service.

An ordering-based concurrency control (ObCC) protocol,
running locally at each node, is responsible for processing
and committing transactions on the node’s private memory.
At this stage, the application thread is still not informed about
the transaction outcome because an additional voting phase
(see below) is required. A subset of cores in each node is
dedicated for the execution of ObCC. ObCC leverages the
tn-order for anticipating the transaction processing. We name
this execution as “speculative” because the tn-order is tentative
and can be contradicted by the total order. Also, in order to
maximize the overlapping of the transaction processing with
the establishment of the total order, transactions are processed
in parallel (using the tn-order for solving conflicts).

A voter is in charge of collecting transaction outcomes
from all nodes and returning the majority of them to the
application. Even though this approach potentially increases
the end-to-end transaction latency because the voter has to
wait for a majority of outcomes, nodes are part of the same
architecture thus their progress is likely not skewed. Using a
lazy concurrency control, where operations are buffered until
reaching the commit phase (as in our ObCC), simplifies the
comparison procedure of the voter because each transaction
keeps track of all its written objects in the write-set and
all the read objects in its read-set. We cannot use hash-
based signatures instead of read-set and write-set because hash
collisions (when two values map to the same hashed value)
can hide faults. The voter is stateless and, as we will show
later (Section VII), it cannot make wrong decisions due to a

CPU-TFAULT that occurs while the comparison is happening.

When the voter restarts a faulty node, Shield enters into
recovery mode and starts overwriting the state from a correct
node. The copy is incremental: the non-faulty node keeps track
of all objects modified during the copying process so that it
can still serve new transactions. This incremental state is then
pushed to the faulty node for finalizing the copy.

B. Limitations

The main goal of Shield is to provide resiliency to CPU-
TFAULTs with an affordable performance penalty. However,
its design has some limitations, which are worth mentioning:

First, it reduces the number of cores available for application
threads to execute. As an example, in a 48-core machine hav-
ing 3 nodes of 8 cores each leaves 24 cores to the application
for executing. Note that in this configuration a node has 8 cores
for running an instance of ObCC. However, given that Shield
is a solution for transactional applications, we believe this
limitation is not too stringent because the logical contention
often prevents the full exploitation of the available hardware.
The second drawback is the increased memory consumption.
In Shield, each node replicates the shared state, thus increasing
the total memory utilized. However, the memory cost is rapidly
decreasing and to protect data from corruption, more than
one isolated copy of the shared data is needed. The third
drawback is the energy consumption. Replication increases
consumption, but it also allows error detection and recovery.
Effective error detection and recovery mechanisms have often
a negative impact on energy because they entail redundancy.
Reducing energy’s overhead is still an open issue which we
plan to address in the future.

V. NETWORK LAYER

We design a protocol for establishing a total order of
messages (i.e., transaction requests) issued by application
threads in the presence of CPU-TFAULTs, and we name the
component that is responsible for implementing this protocol
as the network layer. It provides the first (tentative) delivery
of a message in one communication step after its broadcast,
and the total order in another step (two in total). As stated in
Section III, our total order protocol relies on a monotonically
increasing clock, called clock-service. We also recall that our
total order protocol assumes a reliable and FIFO communi-
cation infrastructure. In other words, if a node N, sends two
messages m; and mso to a node NV, in that order, N, delivers
mg only after m;. No message can be lost.

The pseudo code of the algorithm is reported in Figures 1
and 2. In the following we relate the protocol description to
the pseudo code by specifying the line number (e.g., Line
x.y means Figure x at line number y). Each application
thread sends its requests (tx_request) to all the nodes
[Line 1.7-1.8] and sends associated acknowledgment-requests
(ack_request) to other application threads [Line 1.9-1.10].
According to our programming model, a tx_request mes-
sage contains: the application thread ID; the name of the
transaction to execute along with its parameters (if any); and

the current timestamp. An ack_request message contains
the ID and the current timestamp only.

When a node receives a new tx_request message, it
immediately triggers the tentative delivery for that message
using the message timestamp as tn-order [Line 2.6]. Since
messages cannot be lost in our architecture, nodes do not
reply with an ack. However, a node N, receiving a message
m, cannot know whether m, can be delivered or if there
is another message m, that has been sent before m, and
thus it is currently in transit. Note that m, can only be sent
by an application thread different from the one that sent m,
because, otherwise, due to the FIFO channel, m, would have
been delivered before m,;.

1 while (true) {

2 bool ack_requested = false;
3 while (app_queue . dequeue ())
4 ack_requested = true;

5 if (!app_requests.empty()) {
6 ack_requested = false;

7 for (i=0; i < node_count; i++)

8 send_tx_request(node[i],app_requests.dequeue());
9 for (i=0; i < application_count; i++)

10 if (i != id) send_ack_request(app[i]);

12 if (ack_requested)

13 for (i=0; i < node_count; i++)
14 send_ack_msg(node[i]);
15 }

Fig. 1. Network Layer - Application thread side.

Iwhile (true) {

2 msg = receive_msg();

3 max_timestamp_seen[msg.source] = msg.timestamp ;
4 if (msg.data == DATA_MSG) {

5 msgs_queue [msg. source |. enqueue (msg) ;

6 tn_deliver_msg (msg) ;
7
8
9

found = true;
while (found) {

10 min = INFINITY ; min_index = 0;

11 for (i=0; i < application_count; i++)

12 if (!msgs_queue[i].empty())

13 if (msgs_queue[i].top().timestamp < min) {
14 min = msgs_queue[i].top().timestamp;

15 min_index = 1i;

16 }

17 if (min == INFINITY) {

18 found = false; break

19 } else

20 for (i=0; i < application_count; i++)

21 if (max_timestamp_seen[i] < min &% i != min_index)
22 found = false; break;

23 }

24 if (found) {

25 head_msg = msgs_queue [min_index]. dequeue () ;
26 deliver_msg (head_msg);

27

28 }

29}

Fig. 2. Network Layer - Node side.

For this reason, once an application thread Th receives a
ack_request message, it has to acknowledge all nodes by
sending the current timestamp ¢s. This message has no payload
because it is just needed for letting nodes know that there
cannot be any other message from T'h with a timestamp lesser
than ts. According to that, before deciding to deliver a (totally
ordered) message m, with timestamp ts,, a node waits until
all other application threads have sent a message with higher

timestamp. Exploiting the FIFO channel, if a node receives a
notification from all other application threads with a timestamp
greater than ts,, it means that all previous sent messages have
already been delivered; otherwise, it waits.

At this stage, each node simply selects the message with the
minimum timestamp [Line 2.10-2.23] and triggers the delivery
for that message [Line 2.24-2.27]. This rule is deterministic
and guarantees that messages are ordered equally by all nodes.

Note that our network layer does not let nodes exchange
messages; only application threads interact with nodes. This
way, a CPU-TFAULT cannot be propagated across nodes.

Application threads

req_1l
Thl—— =
&\ .ack_request
Th2 A
\ eq_2
Th3 b\
t
Nodes ¢ r\?x \reques
N1 - \
N2
N3 X' 1 A\
Tentative Delivery

(Speculative Exec) req_1 Delivery

Fig. 3. An example of our total order protocol.

In order to reduce the number of messages sent, we further
optimize the notification sent by application threads after re-
ceiving a new ack_request message from another applica-
tion thread as follow. Since nodes need only the timestamp of
each application thread, the total number of messages sent can
be reduced by merging this notification with the broadcast of
a new tx_request message (if any). In other words, when
an application thread receives an ack_request message, if
it has a new tx_request message to broadcast, it does not
send the timestamp and then perform the broadcast, but rather,
it directly broadcasts [Line 1.5-1.6]. When a node, which
is waiting for the notification from that specific application
thread, receives a new tx_request message broadcast from
that thread, it extracts the timestamp associated with the new
message and considers it as the notification [Line 2.3]. This
optimization reduces the delay for delivering a message.

In Figure 3 we show an example of how the protocol works.
Here we have three application threads and three nodes (f=1).

1) Thl wants to execute a transaction and sends:
i) tx_request (reqg_1) to all nodes; and ii)
ack_request to the other application threads.

2) As soon as a node receives the request, it tentatively
delivers the message.

3) Other application threads (i.e., Th2 and Th3) response to
the ack_request by sending their timestamps. Th3 has
no tx_request to perform, and hence it just sends its
timestamp to all nodes. Th2 already has a tx_request
(req_2) that needs to be sent. Thus, it sends (req_2)
to all nodes, which already includes the new timestamp.

4) When a node receives req_1, req_2, and the ack from
Th3, it can now (non-tentatively) deliver req_1 which

has the minimum timestamp.

A. Tolerating CPU-TFAULTS

If a cPU-TFAULT affects the clock-service, Shield will
detect that error and resynchronize the clocks again. A bit flip
can indeed corrupt the clock value, but anyway the new value
will continue to increase after that error as before, since the
clock value is always increasing. We can identify the following
three possible erroneous cases:

- The first case is a large shift to the past or future of the
clock value. This issue is easily detected by comparing the
request timestamp with the last timestamp received by the
same application thread.

- The second case is a small shift to the past or future.
In this case, the protocol continues to order requests as
before, but some acknowledgments will be dropped. As
long as all application threads are sending requests, the shift
will not be detected and the system will continue to order
requests uninterruptedly. When requests stop, some of the
last requests will likely get stuck in the node queues. A
timeout is used to detect this case. In our prototype, the
timeout is set to the maximum network delay expected.

- The third case happens when a fault occurs while copying
the clock value to the request message. Here one request
will be sent with a different timestamp to one node. This
error is detected by a timeout in the voter (see Section VII).

VI. NODE CONCURRENCY CONTROL

The goal of our concurrency control, called ObCC, is to
process transactions once they are tentatively delivered and
according to their tn-order. Once the total order for that mes-
sage is established, then the tn-order is matched with the total
order. If those two orders are the same, then the transaction can
be committed; otherwise, it has to re-execute. An independent
instance of ObCC runs on each node and commits transactions
in the part of the memory reserved for that node. In order to
reduce the instrumentation overhead, which could hamper the
effectiveness of the speculative execution, ObCC provides the
highest priority to the next-to-commit transaction (also called
the committer transaction), which corresponds to the oldest
transaction already totally ordered.

Transactions are activated as soon as they are tentatively
delivered (tn-del hereafter) and their timestamp defines the tn-
order (speculative execution order). The conflict of two tn-del
transactions is solved by relying on their tn-orders. Consider
two transactions 717 and T5. Let their tn-order be 77 followed
by 75. When a conflict occurs, T5 is aborted and restarted,
thus allowing 7% to access data written by 7} . Non-conflicting
tn-del transactions are processed without incurring any aborts
because their processing order is equivalent to any other order.

The protocol makes use of the following (major) meta-data:
transactional read and write operations are locally buffered
in private structures called read-set and write-set, respec-
tively. The timestamp taken from the clock-service, called
currentTimestamp, is used to detect changes on read
objects. Orecs represents the write-lock table, where an entry

includes the lock status, the super-lock status, the lock owner,
and the version of the last write.

1 word txRead (address, tx) {

2 wLock = Orecs.get(address);

3 if (wLock.owner == tx)

4 return writeSet. get(address);

5 do {

6 while (wLock.isSuperLocked || (wLock.isLocked &&
wLock.owner (precedes) tx))

7 waitForUnlock () ;

8 vl = wLock. version ;

9 value = memory|[address];

10 v2 = wLock. version;

11 } while(vl != v2);

12 if (vl > tx.readTS)

13 validate (tx);//or abort if validation failed

14 readSet.add(address);
15 return value;

16 }

17 word committer_txRead (address, tx) {
18 readSet.add (address);

19 return memory[address];

20 }

Fig. 4. Read procedure.

ObCC uses write-locks that are acquired at encounter time
before performing the actual write operation. A transaction
T, writing object X must acquire the write-lock on X [Line
6.13]. If X is locked by another transaction 7T} that is older
than T}, (according to either the tn-order or the total order, if
defined), then T}, waits until T} commits [Line 6.8-6.10]. If
Ty, follows T, then T} is aborted [Line 6.12]. Exploiting this
mechanism, conflicting transactions are serialized according to
the tn-order, until the total order is established. After that, the
total order will be considered as the reference order.

When a transaction 7). reads an object Y, locked by a
transaction 7); and T} precedes T, then T, waits until that
transaction finishes [Line 5.6-5.7]. In the opposite case, T,
ignores the lock and reads the object because it is serialized
before T, therefore T;’s written object is not visible to 7;.. In
order to guarantee that no transaction is writing the object Y
during a read operation on it, Y’s version is checked before
and after the read [Line 5.8-5.11].

When the read is complete, Y’s version is contrasted with
T,’s last read-timestamp readTsS. If it is different, then other
transactions in the system have been committed after 7,. began
its execution. Therefore, ObCC validates 7T,’s entire read-set
to be sure that all the objects accessed are still consistent [Line
5.12-5.13]. If the validation fails, 7;. is aborted and restarted
[Line 8.15]. Validation of a transaction relies on objects’
versions. The procedure compares the versions of all objects
in the read-set with the transaction’s readTS [Line 8.12-
8.14]. If validation succeeds, i.e., all the object versions are
smaller than transaction’s readTS, then it is advanced to the
current system timestamp [Line 8.11, 8.17]. This minimizes
the number of invocations of the validation procedure.

Only one thread is allowed to commit at a time, because
ObCC must enforce the total order defined by the network
layer as the commit order. No concurrency is allowed at this
stage. Say three transactions are tn-del in the order {7}, T5,
T3 } and the total order is {73, 71, T> }. The transaction

that receives the permission to commit first is therefore 73,
even though it is the last according to the tn-order. Given the
mismatch between T3’s tn-order an total order, its accessed
objects could be invalid and its written objects could be
meaningless. As a result, 75 must validate its execution before
starting the commit phase. Similarly, 77 and 7% have to
accomplish the same validation procedure before committing.

1 void txWrite (address, value, tx) {

2 wLock = Orecs.get(address);

3 if (wLock.owner == tx) {

4 writeSet.update (address , value); return ;

s)

6 do {

7 if (wLock.isLocked)

8 if (wLock.isSuperLocked || wLock.owner(precedes)tx)

9 waitForUnlock () ;

10 validate () ;

11 } else

12 abort (wLock.owner) ;

13 } while (CAS(wLock.lock , UNLOCKED, LOCKED));
14 wLock.owner = tx;

15 writeSet.add (address ,
16

17

18

19

20

value) ;
}
void committer_txWrite (address, value, tx) {
wLock = Orecs.get(address);
if (wLock.owner != tx) {
abort (wLock.owner) ;
21 wLock . superLock = LOCKED;
22 acquiredLocks.add(address);
23 wLock.owner = tx;
24
25 memory [address] = value;
26 writeSet.add (address , value);
27 }
Fig. 5. Write procedure.

1 void transitionToCommitter (tx) {
2 validate () ;
3 for (each address in writeSet)
4 acquiredLocks.add(address);
5 for (each address in writeSet)
6 memory [address] = writeSet.get(address);
7 //use committer version of txRead and txWrite functions
8 tx .committer = true;
9
10 void validate (tx) {

11 tmp = currentTimestamp;
12 for (each address in readSet) {

13 wLock = Orecs.get(address);

14 if (wLock.version >= tx.readTS && wLock.owner != tx)
15 abort(tx);

16

17 tx .readTS = tmp;

18 }

Fig. 6. Validation and transition to committer procedure.

When the final order for a transaction is defined, and it cor-
responds to the next transaction to commit, that transaction has
the highest priority in the system and must be committed fast
because the application is waiting for its reply. ObCC detects
when a speculative transaction becomes non-speculative by
simply checking whether its final order has been defined. If
the final order corresponds to the next transaction to commit,
that transaction’s priority is made the highest. We call this
execution status: committer mode. The main advantage of
processing a transaction in the committer mode is that the
transaction executes with very low instrumentation, thus it
writes directly to the memory [Line 6.25] and it reads without
instrumentation [5.19]. If a thread becomes the committer after

executing all the transactional operations, it validates its read-
set and commits its written objects [Line 8.1-8.9]. After that,
it updates the versions of all the locks and releases them. We
recall that, in order to provide the response to the application
thread, transactions’ outcomes should be compared by the
voter (see Section VII). Thus, even though a thread is in
committer mode, it still has to log its read and written objects
into its read-set and write-set [Line 5.18, 6.26].

If a thread is promoted as committer when the transaction
is still executing, the thread validates the current status of its
read-set, then commits its written objects and keeps executing
as commiter [Line 8.1-8.9]. For each new write operation, the
committer thread acquires a new type of lock, called super-lock
[Line 6.19-6.24]. This lock is implemented such that no other
threads can compete with it. Therefore, no CAS (Compare-
And Swap) or atomic operation is required, allowing the
committer thread to proceed without blocking its execution
on any synchronization point. Clearly, when a super-lock is
acquired on an object, no other transactions are allowed to
write on that object. Determinism is guaranteed by committing
all transactions in the same order on all nodes. However,
non-deterministic operations like random and time are not
allowed during the transaction’s execution. When needed, the
application sends these values along with a transaction request,
so that all replicas can use the same non-deterministic value.

There is only one committer thread at a time that executes
with the highest priority and following the total order already
established. No concurrency is allowed on the commit process
and transactions are always validated before entering the
committer mode. Therefore, it is straightforward to prove that
ObCC guarantees serializability [21].

VII. VOTER

The voter component consists of 2 f 41 voter threads so that
even if a CPU-TFAULT occurs during the verification process,
no wrong decision can be made. Each thread independently
compares the outcomes of the next-to-commit transaction,
according to the total order, by matching the gathered read-
sets and write-sets from all nodes. When an error is detected
(i.e., there is no matching), a voter thread sends to the faulty
node a recovering signal. A faulty node starts the recovery
process only upon receiving f + 1 recovery requests, which
guarantees that the error actually happened on the node and
not on the voter thread. Following the same policy, each voter
thread compares the decisions of all other voter threads to
confirm its decision matches the majority. Finally, one non-
faulty voter thread sends the result to the application thread
that originated the request.

When the first verification request is received from a node,
a voter thread starts a timer that expires after a certain pre-
configured time. This timer is used to detect faults that cause a
node to delay or miss sending the verification request with the
transaction’s outcome. The timer is also used to detect faults
of other voter threads that delay the accomplishment of the
verification process or are crashed.

Shield 4 Nodes —¥—
PBFT 4 Nodes —&—
Zyzzyva 4 Nodes — 53—
Shield 7 Nodes —&—
PBFT 7 Nodes —@—
Zyzzyva 7 Nodes —ll—

1000 msg/sec
microseconds

1 2 3 4 5 6 7 8
Application Threads

(a) Throughput

1
4 Nodes Delay — 53— 4 Nodes —¥—
7 Nodes Delay —&— gz 7 Nodes —O—
4 Nodes Tn-Final —ll— 5 A
7 Nodes Tn-Final —@— 2 07
s 06
T o5
¢ 04
® 03
0.2
0.1
0
3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Application Threads

Application Threads

(b) Latency (c) Reordering

Fig. 7. Performance of the network layer with Tilera. Figure 7(c) reports the reordering % between tn-del and final-del.

VIII. EVALUATION

Shield is developed in C++. Our test-bed is composed of
a hardware message-passing-based architecture, which is the
36-core board of the Tilera TILE-Gx family [7]. Each core is
a full-featured 64-bit processor (1.0 GHz), with two levels of
caches, 8 GB DDR3 memory, and has a non-blocking mesh
that connects cores to the Tilera 2D-interconnection system.

We integrated ObCC into the RSTM library [22]. RSTM
uses platform-specific assembly instructions. Therefore, we
ported its original implementation to our test-bed. As a result,
our new version of RSTM is compliant with all the platforms
already supported by RSTM and the Tilera TILE-Gx.

As competitors, we implemented two well-known BFT
systems: PBFT [11] and Zyzzyva [23]. PBFT is a state-of-
the-art BFT solution that uses a three-phase protocol to deliver
totally ordered messages. Zyzzyva is a client-centric protocol
that uses only two communication steps when the system
has no fault. Both PBFT and Zyzzyva use 3f + 1 nodes to
tolerate f faults. Thus, we selected 4 and 7 nodes in our
experiments although Shield requires only 2f + 1 nodes to
tolerate the same number of faults (i.e., 1 and 2 respectively).
Our implementation of PBFT and Zyzzyva does not involve
message authentication. As for non-fault tolerance protocols,
we included TL2 [24], NOrec [25], and SwissTM [26] in our
comparison, because each of them exposes different design
principles (i.e., NOrec allows a single committer at-a-time;
TL2 leverages fine-grain locking; SwissTM is close to the
ObCC design as it uses read/write locks and it is Orec-based
— i.e., for each shared object, a memory space is defined
where meta-data are stored). It is worth noting that those
protocols commit transactions in any order while ObCC is
forced to commit transactions according to the total order. This
requirement introduces an additional overhead for ObCC.

As applications, we evaluate Shield using two well-known
benchmarks for transactional systems: TPC-C [8] and Vacation
from the STAMP suite [9]; and two micro-benchmarks: the
List data structure and Bank, the monetary application. These
benchmarks have different characteristics: Bank transactions
are very short; TPC-C involves more computation, resulting
in longer execution time; Vacation represents a real-world
workload by emulating a travel reservation system using an in-
memory database; List operations pay the cost of traversing the
data structure, increasing the read-set size and the execution

time. Each reported data-point is the average of 5 repeated
tests after having warmed up the system.

Shield allows multiple threads to interleave their executions
on a core because, if a CPU-TFAULT happens on an executing
thread, the OS context switch will save the execution state and
restore the one of the new thread, thus a CPU-TFAULT cannot
be propagated due to a context switch. However, threads of
different nodes belong to different OS processes, thus they do
not inherently share any memory area. In Shield, each node
reserves one core for running its own instance of the network
layer. A dispatcher (per node) is used for managing network
messages and triggering ObCC upon the receipt of tentative
and totally ordered deliveries.

A. Network Layer

In order to evaluate the performance of the network layer
without transactional workloads, we conducted an experimen-
tal study by varying the number of application threads issuing
requests to be totally ordered, and fixing the number of nodes
to {4, 7}. In this experimental study, dispatchers do not
activate ObCC, but they only log network messages’ meta-
data for collecting statistics. Shield’s network layer imple-
mentation does not batch messages for reducing transaction
latency. We measure the throughput (i.e., number of messages
totally ordered per second); the average latency between the
broadcast and the delivery of a message, as well as the latency
between the tentative and final delivery; and the probability of
mismatch between the tentative and final order.

Figure 7(a) shows the network throughput. Two factors
affect the network throughput: the total number of messages
exchanged per request, and the number of communication
steps involved for reaching the total order. In PBFT and
Zyzzyva, the number of messages varies according to only the
number of nodes. Rather, in Shield it depends on the following
three factors: the number of nodes, the number of application
threads, and the system load (due to the optimization where
acks can be piggybacked with new requests). For instance,
PBFT requires a total of 28 and 91 network messages per
application request when 4 and 7 nodes are deployed, respec-
tively. On the other hand, Shield takes only one communica-
tion step under high load (because an application thread does
not need to send an acknowledgment when it has a new request
ready to broadcast) and therefore the total number of messages
per request is in the order of the sum of the number of nodes
and the number of application threads.

For that reason we observe the low throughput of PBFT
compared to others. Zyzzyva is slightly better than Shield
when 4 nodes and a high number of application threads are
deployed. However, the additional communication steps have a
negative impact using 7 nodes. Shield performance is slightly
affected when increasing the number of nodes. With 4 nodes,
Shield is similar to Zyzzyva in the range of +20% to -14%.
At 7 nodes, Shield is on average 52% better than Zyzzyva.
Compared to PBFT, Shield is up to 3.6 better.

Figure 7(b) reports the average time between the broadcast
of a request and its delivery (“Delay”). The delay clearly
increases along with the number of application threads but
it is worth noting that it is still lower than 35 microseconds.
The figure also includes the average time between a tentative
and non-tentative delivery for a request. This time represents,
on average, 76% of the total delay for ordering a request,
and it can be exploited by ObCC to speculate while the total
order is determined (given that the processing is in-memory).
Figure 7(c) shows that in Shield, the speculative execution of
ODbCC is effective because for the 99% of the cases, there is
no mismatch between the tentative order and the total order.

B. System Performance

Here we show the performance of the whole system de-
ployed. We experimented it by using 4 and 7 nodes, and we
varied the number of threads forming the ObCC concurrency
control (note that those threads are not application threads).
We selected this configuration because, this way, we can
show the impact of the parallel transaction execution (despite
the in-order commit) and its scalability while increasing the
ObCC worker threads. Note that PBFT and Zyzzyva process
transactions serially by using one thread. In the following
experiments, the number of application threads is fixed at
3 and they are configured as open-loop where requests are
injected repeatedly with a think-time in between them. The
latter has been configured by selecting the one providing the
best performance close to the system’s saturation.

In Figure 8(a) plots performance using the TPC-C bench-
mark. The benchmark is configured using the standard per-
centage of transactions profile as suggested by the original
specification, with 100 warehouses available in the system. In
TPC-C, transactions are complex and long, thus the load of the
transactional computation overcomes any possible bottleneck
introduced by the network layer. As a consequence, Shield is
able to perform very close, 9% and 22.5%, to the non-fault-
tolerant protocols, SwissTM and TL2, respectively. NOrec’s
behavior on this benchmark is different from others as it
does not use Orecs, but, at a large number of threads, it
is similar to TL2. The parallelism of ObCC allows Shield
to outperform Zyzzyva and PBFT by 1.14x and 1.19x (on
average), respectively.

Results with the List benchmark are in Figure 8(b). We
configured the list with 256 items, and each transaction selects
an operation to execute (i.e., read, insert, and delete) using
a uniform distribution. Contention in list operations is high
due to traversing all elements up to the required one. Thus,

the read-set is large, which increases the conflict rate when
a node in the read-set is modified by another transaction. As
a general assessment, the results indicate the same trend as
that of TPC-C for Shield and SwissTM. The performance
of TL2 and NOrec is better as their concurrency control
schemes do not use encounter time write locks, which results
in a good design choice under the tested workload. Here, the
gap between SwissTM and Shield is about 48% and Shield
outperforms BFT competitors by as much as 87%.

Figure 8(c) shows the Bank benchmark’s throughput.
Shield’s performance is very close to the network layer’s
throughput. That is because Bank transactions are very short
(just a few memory operations) and the speculative pro-
cessing, that is done before issuing the total order, allows
the transaction execution to significantly overlap with the
network ordering process. Here the network layer represents
the performance bottleneck because the real computation is
limited, and thus non-fault-tolerant competitors can achieve
better performance than Shield (e.g., 2.4x) because they do
not wait for the delivery of a request to start its processing.

Figure 8(d) shows results for the Vacation/STAMP bench-
mark with high contention configurations. Note that in this
experiment, we plot the execution time (in contrast to all
previous benchmarks, which plot the throughput), thus, lower
is better. Vacation exposes long transaction execution time
because it emulates an online travel reservation system, with
application threads performing three types of transactions
(reservations, cancellations, and updates) that interact with
an in-memory database. Starting from 3 ObCC threads, the
differences between Shield and SwissTM, NOrec, and TL2 are
44%, 54%, and 58% respectively. Shield is 2x and 2.2 faster
on average than Zyzzyva and PBFT respectively. Figure 8(e)
shows results using Vacation configured with low contention.
At low contention, the number of conflicting transaction
decreases and more transactions can run concurrently. As a
result, Shield performs slightly worse than before.

Summarizing, the general trend observed in these results is
that Shield does not significantly degrade system performance
with respect to standalone (i.e., non-fault-tolerant) execution,
especially in non-trivial benchmarks (e.g., TPC-C, Vacation).
Shield overhead is in the range from 9% to 60%. Shield
concurrent execution allows it to get much better performance
compared to non-concurrent BFT systems. Shield is 1.54x on
average better than non-concurrent BFT systems.

IX. RELATED WORK

In the fault-tolerance literature (from databases to dis-
tributed systems), many proposals focused on increasing con-
current execution of requests to improve performance. The key
idea is to find independent requests that can run in parallel
while forcing dependent requests to run sequentially with the
same order in all nodes. In [27], the primary replica executes
transactions concurrently. Then a scheduler uses information
from primary execution of transactions to drive secondary
replicas’ execution. This approach is applicable to strict two-
phase locking concurrency controls.

K tx/sec

4 Nodes —¥— 7 Nodes —&— NOrec —S7— SwissTM —&— TL2 —@— PBFT —¢— Zyzzyva —&—

5000

8 900 2
1 800 4500
4000
3500
3000
2500

700

Threads

(a) TPC-C

Threads

(b) List ©

Threads

Bank

Threads Threads

(d) Vacation/High Contention (e) Vacation/Low Contention

Fig. 8. Performance of Shield with Tilera. Figures 8(c), 8(a), 8(b) show the throughput; Figures 8(d), 8(e) show the application completion time.

There are also the following proposals for centralized
systems. In [12], the system is split using isolated virtual
machines which represent servers as in the distributed system.
Replicant [28] involved developers by adding determinism
hints. Its relaxed determinism model allows concurrent exe-
cution unless developers explicitly added a determinism hint.
1Paxos [17] is a consensus algorithm optimized for running on
centralized multicore architectures. Its algorithmic innovations
focus on how to effectively exploit the available resources. As
the other algorithms derived from Paxos [15], 1Paxos targets
the crash of executing processors.

Hardware fault-tolerant architectures are more expensive
due to the cost of each added replica, and they are limited in
the number of faults they can tolerate. For example, NonStop
architecture [29] uses two or three replicas. Each replica
executes the same instruction stream independently and a voter
compares outputs. Hardware resources (memory, disks) are
split between replicas and isolated from each other.

State machine replication is a well known paradigm in
transaction processing [4]. The notion of tentative order has
been introduced in [20] and further exploited in [30], [31].

X. CONCLUSION

Shield is specialized in solving CPU-TFAULTSs, thus it does
not suffer from the overhead of general BFT solutions when
deployed in centralized (multicore) architectures. Our results
on hardware message-passing-based board confirm the claim.

ACKNOWLEDGMENT

Authors would like to thank Prof. Binoy Ravindran for his
feedback in the first stage of this work. This material is based
upon work supported by the Air Force Office of Scientific
Research under award number FA9550-17-1-0367.

REFERENCES

[1] R. Baumann, “Radiation-induced soft errors in advanced semiconductor
technologies,” Device and Materials Reliability, IEEE Transactions on,
vol. 5, no. 3, pp. 305-316, 2005.

S. Borkar, “Designing reliable systems from unreliable components: the
challenges of transistor variability and degradation,” Micro, IEEE, 2005.
M. Mohamedin, R. Palmieri, and B. Ravindran, “On preserving data
integrity of transactional applications on multicore architectures,” in
ICDCS, 2015, pp. 764-765.

F. Pedone, R. Guerraoui, and A. Schiper, “The database state machine
approach,” Distrib. Parallel Databases, vol. 14, no. 1, pp. 71-98, 2003.
B. Dobel, H. Hirtig, and M. Engel, “Operating system support for
redundant multithreading,” in EMSOFT, 2012, pp. 83-92.

[2]
[3]

[4]
[5]

[6]

[7]

[8]

[9]
(10]
(11]
[12]
[13]
[14]
[15]
[16]
[17]
(18]
[19]

[20]

[21]

[22]

[23]
[24]
[25]
[26]

[27]

(28]

[29]

(30]

(31]

G. Yalcin, O. Unsal, 1. Hur, A. Cristal, and M. Valero, “FaulTM: Fault-
Tolerance Using Hardware Transactional Memory,” in Pespma, 2010.
Tilera Corporation, TILE-Gx Processor Family, http://www.tilera.com.
T. Council, “TPC-C benchmark,” 2010.

C. Cao Minh, J. Chung, C. Kozyrakis, and K. Olukotun, “STAMP:
Stanford transactional applications for multi-processing,” in IISWC ’08,
pp. 35-46.

L. Lamport, R. Shostak, and M. Pease, “The byzantine generals prob-
lem,” ACM Trans. Program. Lang. Syst., vol. 4, pp. 382—401, 1982.
M. Castro and B. Liskov, “Practical byzantine fault tolerance,” in OSDI,
1999, pp. 173-186.

B.-G. Chun, P. Maniatis, and S. Shenker, “Diverse replication for single-
machine byzantine-fault tolerance,” ser. ATC, 2008, pp. 287-292.

J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Sep-
arating agreement from execution for byzantine fault tolerant services,”
ser. SOSP, 2003, pp. 253-267.

Y. Zhou, D. Marinov, W. Sanders, C. Zilles, M. d’Amorim, S. Lauter-
burg, R. M. Lefever, and J. Tucek, “Delta execution for software
reliability,” ser. HotDep, 2007.

L. Lamport, “The part-time parliament,” ACM Trans. Comput. Syst. "98.
Y. Mao, F. P. Junqueira, and K. Marzullo, “Mencius: building efficient
replicated state machines for WANS,” in OSDI, 2008, pp. 369-384.

T. David, R. Guerraoui, and M. Yabandeh, “Consensus inside,” in
Middleware, 2014, pp. 145-156.

B. Arun, S. Peluso, R. Palmieri, G. Losa, and B. Ravindran, “Speeding
up consensus by chasing fast decisions,” in DSN, 2017, pp. 49-60.

S. Peluso, A. Turcu, R. Palmieri, G. Losa, and B. Ravindran, “Making
fast consensus generally faster,” in DSN, 2016, pp. 156-167.

B. Kemme, F. Pedone, G. Alonso, A. Schiper, and M. Wiesmann, “Using
optimistic atomic broadcast in transaction processing systems,” [EEE
TKDE, vol. 15, no. 4, 2003.

P. A. Bernstein, V. Hadzilacos, and N. Goodman, Concurrency Control
and Recovery in Database Systems, 1987.

V. Marathe, M. Spear, C. Heriot, A. Acharya, D. Eisenstat,
W. Scherer III, and M. Scott, “Lowering the overhead of nonblocking
software transactional memory,” in TRANSACT, 2006.

R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva:
Speculative Byzantine Fault Tolerance,” ser. SOSP, 2007, pp. 45-58.
D. Dice, O. Shalev, and N. Shavit, “Transactional locking II,” in DISC,
2006, pp. 194-208.

L. Dalessandro, M. F. Spear, and M. L. Scott, “NOrec: Streamlining
STM by Abolishing Ownership Records,” in PPoPP, 2010, pp. 67-78.
A. Dragojevié, R. Guerraoui, and M. Kapalka, “Stretching transactional
memory,” in PLDI, 2009, pp. 155-165.

B. Vandiver, H. Balakrishnan, B. Liskov, and S. Madden, “Tolerating
byzantine faults in transaction processing systems using commit barrier
scheduling,” ser. SOSP, 2007, pp. 59-72.

J. Pool, 1. S. K. Wong, and D. Lie, “Relaxed determinism: Making
redundant execution on multiprocessors practical,” ser. HOTOS’07.

D. Bernick, B. Bruckert, P. Vigna, D. Garcia, R. Jardine, J. Klecka,
and J. Smullen, “NonStop advanced architecture,” ser. DSN, 2005, pp.
12-21.

R. Palmieri, F. Quaglia, and P. Romano, “Osare: Opportunistic specu-
lation in actively replicated transactional systems,” in SRDS, 2011, pp.
59-64.

S. Hirve, R. Palmieri, and B. Ravindran, “Archie: a speculative replicated
transactional system,” in Middleware, 2014, pp. 265-276.

