
KVCG: A Heterogeneous Key-Value Store for Skewed
Workloads

dePaul Miller, Jacob Nelson, Ahmed Hassan, Roberto Palmieri
Lehigh University, USA

{dsm220,jjn217,ahh319,palmieri}@lehigh.edu

ABSTRACT
We present KVCG, a novel heterogeneous key-value store
whose primary objective is to serve client requests targeting
frequently accessed (hot) keys at sub-millisecond latency and
requests targeting less frequently accessed (cold) keys with
high throughput. To accomplish this goal, KVCG deploys an
architecture where requests on hot keys are routed to a soft-
ware cache operated by CPU threads, while the remainder
are offloaded to a data repository optimized for execution on
modern GPU devices. Cold/hot partitioning is done at run-
time through a model trained with the incoming workload.
Against a state-of-the-art competitor, we obtain up to 34x
improvement in latency.

CCS CONCEPTS
• Information systems → Key-value stores; • Comput-
ing methodologies → Graphics processors.

KEYWORDS
Key-value Stores, Heterogeneous Computing, Concurrency
ACM Reference Format:
dePaul Miller, Jacob Nelson, Ahmed Hassan, Roberto Palmieri. 2021.
KVCG: A Heterogeneous Key-Value Store for SkewedWorkloads. In
The 14th ACM International Systems and Storage Conference (SYSTOR
’21), June 14–16, 2021, Haifa, Israel. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3456727.3463779

1 INTRODUCTION
Key-value stores play a fundamental role in many widely
used applications that offer (possibly millions of) users the
ability to access a shared state in a consistent way [16, 22, 23,
25, 26, 28, 32, 45]. Because of its flexible data model, and a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SYSTOR ’21, June 14–16, 2021, Haifa, Israel
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-8398-1/21/06. . . $15.00
https://doi.org/10.1145/3456727.3463779

simpler software architecture than traditional database man-
agement systems [2, 39], the adoption of key-value stores
has rapidly grown over the last decade. Today, this class of
data repositories must handle an extremely high volume of
operations, which has motivated a large effort to improve
performance [25, 31, 35, 45].

Looking deeper into the traditional key-value store opera-
tions (e.g., atomic GET, PUT, and DELETE) we find that they
require few CPU cycles to execute. Despite their simplicity,
the number of operations that need to be processed is large
because of the high application demand.
The vital observation is that key-value store workloads

suggest a lower affinity to CPUs than to accelerators, such
as the Graphic Processing Unit (GPU). CPUs are designed to
process fewer, but more complex, instructions than its GPU
counterpart, which is evident when comparing the x86_64
ISA to PTX [10, 21]. On the other hand, the GPU architecture
has more, simpler, cores offering higher parallelism and can
exploit a much higher memory bandwidth when compared
to the CPUs as noted in [38].

GPUs are also more affordable hardware than large multi-
core architectures [3, 4], and nowadays they are also available
in major cloud providers [5–7]. However, the high through-
put offered by GPUs come at the cost of a high latency for in-
dividual tasks. In fact, well-known downsides such as travers-
ing the external bus (e.g., PCIe) to transfer instructions and
data between CPU and GPU, implementing efficient synchro-
nization barriers, and launching kernels to execute on the
GPU can stretch latency when offloaded tasks have short
execution time, like key-value store operations.

In this work, we present KVCG, a heterogeneous key-value
store designed to leverage the relative merits of both CPUs
and GPUs. KVCG aims to maximize the effectiveness of CPU
resources while cooperating with the GPU. Our work builds
on the observation that key-value store workloads are typi-
cally skewed, meaning a subset of keys is more popular than
others [13, 20, 44]. This divides the key-space into frequently
accessed (hot) and less frequently accessed (cold) keys. Hot
keys require low latency and are accessed by several applica-
tion clients; cold keys can have a lower priority because they
are not accessed with the same intensity. Previous works de-
tailing real-world application behavior (e.g., at Facebook [36]
and Twitter [44]) demonstrate that workloads have innate

https://doi.org/10.1145/3456727.3463779
https://doi.org/10.1145/3456727.3463779

SYSTOR ’21, June 14–16, 2021, Haifa, Israel d. Miller et al.

tendencies to access a subset of keys more frequently, and
also that such a set of frequently accessed keys changes over
time. These observations motivate the following design.
KVCG deploys three main components: the Hot Cache, a

coherent software cache, accessed by CPU threads, to serve
operations on hot keys; the Canonical Store, a data repository
whose core component is a lock-based GPU hashmap (L-Slab)
optimized for high throughput and able to store values of
arbitrary size; and the Router, which relies on a model trained
at runtime to classify incoming requests as hot or cold, and
directs them to either the Hot Cache or the Canonical Store.
Operations that are not served by the Hot Cache on the

CPU are batched and scheduled for execution on the GPU,
where the Canonical Store operates. Effectively, the entire
data repository resides on GPU accessible memory and keys
are transitioned to/from the CPU based on the output of the
model in the Router. In order to circumvent the size limits
of GPU memory, KVCG’s memory management exploits
NVIDIA Unified Memory technology [37] to host both key-
value pairs and metadata.

KVCG is implemented using CUDA 11.2 and evaluated
using NVIDIA GTX 1080 and the YCSB benchmark [20] at
different skews and mix of operation types (read/write). Our
competitors are MegaKV [45], a key-value store specifically
designed to exploit the GPU for providing high throughput;
MICA [31], a high-performance CPU key value store; as well
as a CPU-only version and a GPU-only version of KVCG.
Overall, performance results show that KVCG is able to

provide a latency for hot requests in the range 19us to 150us
on typical read-heavy skewed workloads [44] (i.e., 𝜃=0.5).
The latency of cold requests also stays within the range 0.2ms
to 2.2ms. Compared to MegaKV, KVCG achieves a 34x mean
latency improvement with respect to the hot key’s while
retaining 1.1x throughput improvement with respect to all
keys. Compared to MICA, KVCG achieves at least a 1.4x
improvement in throughput.

When theworkload changes during runtime, KVCG adapts
its partitioning scheme between hot and cold keys by updat-
ing the model in the Router.

This paper makes the following contributions:
• We propose a novel design for effectively deploying
a key-value store across both the CPU and GPU to
accelerate skewed workloads.

• We demonstrate that isolating hot keys to the CPU and
processing requests targeting cold keys on the GPU
improves throughput while dramatically lowering la-
tency for operations on hot keys.

• We present L-Slab, an extension to the high-
performance GPU-based hashmap, Slab [12], that sup-
ports arbitrarily sized values on the GPU.

The source code and benchmarks for KVCG and competi-
tors is released at github.com/sss-lehigh.

2 RELATEDWORK
Both academia and industry have proposed many key-
value stores in the last decade. Examples include Mem-
cached [23], LevelDB [26], RocksDB [16], EvenDB [25],
Oak [32], FARM [22], FaSST [28]. Since KVCG focuses on
cooperation between the CPU and GPU to serve requests, in
the rest of the related work we focus on previous effort in
executing atomic operations on heterogeneous devices.
In recent years, synchronization on the GPU has gained

substantial attention. Transactional memory [15, 17–19, 24,
43], lock-based synchronization [29, 42, 45] and lock-free ap-
proaches [33, 40] have all been explored as viable options for
designing concurrent applications for the GPU. Furthermore,
evidence that fine-grained synchronization can benefit GPU
programs provides a foundation for the continued efforts
along this line of research [29, 34]. KVCG follows suit by
allowing write operations to perform concurrently with read
operations on the CPU and GPU.

MegaKV [45] is a key-value store that handles operations
on the GPU and uses a static dispatching policy to provide
predictable performance. It is similar to KVCG in its aim to
accelerate key-value stores. It utilizes a concurrent cuckoo
hash table and a protocol that deterministically schedules
GPU kernels to execute batches of requests. Furthermore,
only an index is maintained on the GPU, with key-value pairs
in host memory. KVCG is able to utilize the oversubscription
of Unified Memory to provide indexing that can extend be-
yond the limits of GPU memory, while MegaKV must evict
items when GPUmemory fills up. KVCG is also able to utilize
the CPU for performing low-latency operations on hot keys.
Because it is constrained to atomic operations for key-

value pairs, MegaKV only stores 4B hashes to 4B pointers on
the GPU, which forces MegaKV to resolve collisions on the
CPU in post-processing. Instead, KVCG reduces overhead
by utilizing a lock-based approach and using 8B hashes and
8B pointers on the GPU.
Closer related works to KVCG are Slab [12], a hashmap

based on a GPU data structure called a slab list, and HCC [14],
a hybrid cache coherent hashmap. Slab is extensively de-
scribed in Section 5 since KVCG includes an improved ver-
sion of Slab, named L-Slab, to process operations on the GPU.
Instead, herewe focus onHCC.HCCuses the CPU to perform
write operations in a non-blocking fashion while GET opera-
tions are scheduled on the GPUs. Similar to KVCG, HCC also
uses Unified Memory but differs in that it offloads PUT oper-
ations to the CPU. Therefore, for HCC, the GPU workload
is read-only, whereas KVCG processes both read and write
workloads concurrently on the GPU. HCC is specifically op-
timized to take advantage of IBM’s Power9 architecture with
NVLINK; KVCG targets off-the-shelf hardware.

github.com/sss-lehigh

KVCG: A Heterogeneous Key-Value Store for Skewed Workloads SYSTOR ’21, June 14–16, 2021, Haifa, Israel

3 SYSTEM OVERVIEW
KVCG implements the following widely used atomic lineariz-
able APIs: GET, PUT, and DELETE. In KVCG the return value
of a GET is the data associated with the provided key. The
PUT and DELETE APIs return the value of the provided key
before the update takes effect, if any existed.

KVCG is designed to take advantage of the high through-
put of the GPU and the low latency of the CPU. At a high
level KVCG includes three main components.
- The Canonical Store, which holds all the key-value pairs in
the data repository. This store is has values placed in CPU
memory when values are over 8B, with an index accessible
by the GPU. The Canonical Store also includes a concur-
rency control to let GPU threads process atomic read and
write operations on the key-value pairs. KVCG avoids lim-
iting the total size of the index to the memory resident on
the GPU by relying on NVIDIA Unified Memory (UM) [37].
UM enables a unified view of the address space and on
demand paging across both the CPU and GPU since CUDA
6 [27]. Through a combination of UM and explicit mem-
ory management, KVCG can utilize more memory than
is available on the GPU while avoiding excessive paging
overheads [30].

- The Hot Cache, which serves operations on hot (i.e., fre-
quently accessed) keys to ensure low latency for popular
requests. The Hot Cache is coherent, meaning it caches the
latest value of current hot keys. This cache allows KVCG to
effectively exploit the available CPU threads (significantly
outnumbered by GPU threads) to perform low-latency op-
erations without the interference of requests targeting cold
(i.e., less frequently accessed) keys, which would otherwise
saturate CPU threads.

- The Router, which includes a model to determine whether
or not a key should be destined for the Hot Cache or the
Canonical Store. Importantly, a wrong prediction by this
model does not impact operations’ correctness, it only af-
fect their performance. The model is continuously trained
with incoming client requests so that KVCG can dynam-
ically change the composition of cold and hot storage to
respond to application workload changes over time.
To accommodate the needs of modern key-value stores,

KVCG allows clients to issue a batch of requests as opposed
to individual operations. This mechanism is a generalization
of batched operations, like the multi-Get API supported in
Memcached [23], a well-known key-value store. Our expecta-
tion is that KVCG is pairedwith amiddleware that aggregates
end-user requests into batches that are then submitted to the
store. We call these batches Client Request Batches (CRB).

In the following sections, we first describe the lifetime of
a CRB then follow up with a discussion of the design of each
of the components that make up KVCG.

4 EXECUTIONWORKFLOW
This section follows the journey of a CRB as its requests
are processed by KVCG. Each entry in the CRB consists of
the request type, the key-value pair, and a response field.
The latter is used to notify the client that the request has
completed successfully. A response either informs the client
that the operation completed or that the operations should
be retried. As we show later, a retry is required in two cases.
First, when the GPU cannot accept new requests to avoid
overrunning memory. Second, when updates are blocked
during a model change.

Figure 1: KVCG architecture and request workflow.

Figure 1 illustrates the software architecture of KVCG and
embeds the sequence of steps performed by client requests
to accomplish their execution.

1 The first stage of processing is partitioning all requests
in a CRB into hot requests or cold requests based on the
current knowledge of the Router. Note that this partitioning
scheme can change over time as a consequence of an update
to the Router’s model (more details in Section 7).

2 After partitioning, the cold requests are batched in a
GPU Request Batch (GRB) and enqueued for execution on
the Canonical Store through a GRB queue.

3a Requests that were not sent to the Canonical Store
are concurrently executed on the Hot Cache by a pool of
dedicated threads. If a request can be serviced by the Hot
Cache, meaning there was a hit, then the client is notified
immediately. Otherwise, misses are batched for execution
on the GPU where the Canonical Store resides, similar to the
cold requests. The term GRB also applies to these batches.

3b Requests that missed the Hot Cache are enqueued on
the GRB queue for processing on the Canonical Store.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel d. Miller et al.

4 As GRBs are enqueued, dedicated threads are respon-
sible for dequeuing them from the head of the queue and
creating Aggregated Request Batches (ARBs). ARBs are nec-
essary to fully leverage the massive parallelism of the GPU.

5 Finally, ARBs are fed to the GPU. Requests are exe-
cuted in parallel with the appropriate support for mutual
exclusion to ensure atomicity of operations. At this point
and if needed (see Section 6), the Hot Cache is updated to
avoid subsequent misses. The return values of operations
is transferred through the value field of the corresponding
request in the ARB to clients.
According to the just described execution flow, the CPU

and GPU concurrently execute requests. Consistency is guar-
anteed because effectively the key-value store is partitioned
at any given moment between the Hot Cache and the Canon-
ical Store. The only potentially dangerous scenario for cor-
rectness is when the model in the Router is updated. We will
detail how we handle that in Section 7.

5 THE CANONICAL STORE
The Canonical Store supports GET, PUT, and DELETE opera-
tions on a given key. The core component that guarantees
the correct and effective execution of these operations is a
GPU lock-based hashmap, we name L-Slab.
L-Slab relies on readers-writer locks [11, 34] to en-

force ordering between conflicting operations, and warp-
cooperation [12] for increasing performance of the lookup
functionality (Section 5.1). L-Slab uses 8-byte keys and values,
meanwhile exploiting Unified Memory to support a total ca-
pacity exceeding that of GPU memory alone. When variable
sized values are required, pointers to non-adjacent memory
can be used (see Section 5.1.1).
As described in Section 4, a GRB queue is used to accu-

mulate requests that are either directly passed to the GPU
processing pipeline via the Router, or requests that missed
in the Hot Cache. As GRBs are received, they are formed
into the larger ARBs for dispatch to the GPU. As long as
there are GRBs in the queue, a thread will continue to fill its
ARB until there are twice as many requests as the number of
threads available on the GPU or no more GRBs are available.
To avoid blocking in the latter case, we deploy a dequeue
budget that limits the number of times a queue is checked.

ARBs are aggregated batches of requests that contain the
target key, the key hash, an associated value, and the re-
quest type (i.e., GET, PUT, DELETE). Since the ARB is accessed
by the GPU, it is first provisioned in pinned host memory,
then copied to the GPU with a call to cudaMemcpy. Upon
completing execution on the GPU, the results of each op-
eration are then copied back to the ARB in host memory
before returning to the client. Explicit memory management
allows for more efficient ARB processing because all request

data and metadata resides on the GPU when the kernel is
launched. We decided against allocating ARBs using Unified
Memory because it incurs the additional cost associated with
paging memory to the the GPU, which negatively impacts
performance when interleaved with request processing.
ARB dispatch is handled by orchestrator threads, which

handle ARB creation, GPU kernel launch and client response.
In our implementation, we associate each orchestrator thread
with a CUDA stream [8] to pipeline execution. The above
choice is critical to minimize the impact of the overhead of
offloading work to the GPU, therefore retaining low latency
while still enjoying the high throughput of the GPU.

5.1 Lock-Based Warp-Cooperative Slab
L-Slab is a lock-based warp-cooperative hashmap data struc-
ture and builds upon the GPU-based Slab hashmap [12]. As
opposed to conventional hashmap designs, Slab is appro-
priate for GPU because each bucket stores a linked list of
slabs, and each slab holds 31 key-value pairs and a pointer
to the next slab in the bucket. This design matches the GPU
execution structure where an entire warp, meaning a set of
32 GPU-threads, can be assigned to work on a slab. In order
to atomically modify key-value pairs in the hashmap, Slab
uses Compare-And-Swap (CAS) operations. Because of that,
it can only accept key-value pairs of size 8 bytes total (e.g.,
4-byte for the key and 4-byte for the value), which is the
hardware limitation to guarantee correctness of the CUDA
CAS operations. Accommodating larger size of key-value
pairs in Slab would require a secondary index to be queried
using the original 8B key-value pair.
L-Slab inherits Slab’s use of warp-cooperation because

i) it provides high performance due to favouring coalesced
accesses to the GPU memory [1]; and ii) GPU threads within
awarp can use fast hardware instructions (e.g., __shfl_sync,
__ballot_sync) to coordinate their activities and guarantee
correct concurrent accesses over shared data. Unlike the lock-
free design of Slab, L-Slab deploys a reader-writer spin-lock
to protect each bucket. This modification makes KVCG more
practical because it can efficiently work with any size of
key-value pairs, as we will show later in Section 5.1.1.

L-Slab serves requests of all types with the following gen-
eral pattern. At each kernel launch, the ARB is first parti-
tioned among warps. We oversubscribe the streaming multi-
processors (SMs) in the GPU by launching as many blocks as
twice the number of SMs, which offsets the latency involved
with launching a kernel and transferring the ARB to the GPU.
Each block consists of 16 warps and we assign each thread a
single operation to perform.

During execution, the warp works in unison to complete
all requests that its threads are assigned, one request at a time.
For each request, a single threadwithin thewarp orchestrates

KVCG: A Heterogeneous Key-Value Store for Skewed Workloads SYSTOR ’21, June 14–16, 2021, Haifa, Israel

Figure 2: Execution of a GET operation on L-Slab.

the operation. Per-bucket locks allow threads in a warp to
safely cooperate despite conflicting concurrent operations.

Figure 2 demonstrates this execution for a GET operation,
with a simplified warp consisting of 8 threads. 1 Initially,
the leader thread (in this case Thread 1) locks the bucket
corresponding to its request. 2 Then, it broadcasts the target
key of its request to the entire warp. 3 Together, all threads
in the warp check their corresponding entry in the first slab
for the broadcast key. 4 Next, all threads in the warp report
back to the leader whether their entry matched the key. 5
If the key is found, then the leader performs the GET and
releases the lock. If the key is not found, and there is a pointer
to another slab, then the leader broadcasts the address of
the next slab and the search continues. Finally, this entire
process is repeated for every request designated to the warp,
with each warp thread acting as the leader for its assigned
requests. We will discuss PUT and DELETE operations in more
detail later, but we first explain the layout of slabs.

Each slab in our design is composed of two distinct arrays
that are adjacent in memory. Considering the case of keys
and values of 8B each, a slab is constructed as an array of 32
8-byte entries, 31 are reserved for keys and the last for the
pointer to the next slab, followed by an array of 31 values.
This layout is motivated by the following intuition. For any
request, a value is accessed (i.e., read or written) only after
the slab’s keys have been analyzed and matched with the key
that was broadcast by the leader of the current operation.
Packing keys together allows accesses by the warp to be
coalesced, which is a well-known optimization to improve
performance on the GPU [1]. Once found, the location of the
value corresponding to the key can also be easily determined,
since each entry in the slab is a fixed size. We describe how
we leverage these entries to store arbitrary sized keys and
values later in this subsection.

We now detail how each operation on L-Slab is handled.
As described above, the warp cooperatively indexes to the
bucket corresponding to the hash. The first thread in the
warp acquires the lock on the bucket. Then, the warp pro-
ceeds to search for the key or an empty key if the key cannot
be found for a PUT. One of the following then occurs:

- GET. The leader reads the value associated with the key
and writes it to the ARB.

- PUT. The leader writes the key and value to the slab, and
writes back the previous value, if any, to the ARB.

- DELETE. The leader sets the matching key, if found, to the
empty key and writes back the previous value to the ARB.
After the operation finishes, the lock is released.

5.1.1 Handling large size key-value pairs. As mentioned ear-
lier, L-Slab can support keys and values of arbitrary sizes.
In the above description we assumed that keys and values
have both a fixed size of 8 bytes (if less, they are padded to 8
bytes). If larger sizes are desired, the keys and values in the
map are pointers to immutable memory blocks that can be
unrestrictedly allocated either in UM, GPU, or main memory.

The only additional overhead of using values larger than 8
bytes, which therefore cannot be embedded into the internal
memory layout of L-Slab, is the memory copy performed
before delivering the return value of an operation back to
the application on the CPU.

5.2 Memory Management
As said earlier, the Canonical Store leverages UnifiedMemory
(UM) for over-subscription, which allows more memory than
the one physically available on the GPU to be allocated.
Utilizing UM introduces advantages and flexibility through
a hardware-implemented on-demand page fault mechanism
that allows the CPU and GPU to cooperate over a coherent
shared memory. The downside of this increased flexibility
is the possible performance penalty due to repeated page
faults that let memory pages continuously migrate between
devices [30]. Another issue of UM is that memory cannot
be dynamically allocated by GPU threads. This capability is
critical for KVCG since slabs in the L-Slab hashmap should
be allocated/deallocated at runtime to accommodate update
operations on the GPU without involvement of the CPU.

By taking into account the above limitations, KVCG lever-
ages UM as follows. In order to allow for dynamic memory
allocation on the GPU, regions of memory are pre-allocated
in UM. At runtime, GPU threads can request chunks of the
pre-allocated memory. If the requested amount exceeds the
total memory previously accounted for, then the CPU re-
claims the kernel and expands the pre-allocated region.

In addition to that, UM is used by KVCG only for allocating
the actual L-Slab hashmap structure (i.e., the index) and the
key-value pairs. ARBs are not allocated in UM because their
size is often smaller than the granularity at which UM trans-
fers memory between CPU and GPU. Since the performance
of operations involving the ARB is critical for achieving low-
latency GPU computation, we prefer to explicitly move ARBs
from CPU to GPU and vice-versa.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel d. Miller et al.

6 THE HOT CACHE
The Hot Cache wraps a high-performance concurrent data
structure to hold some key-value pairs of KVCG. The pur-
pose is to provide low-latency operations for a subset of
keys that are classified as hot (i.e., frequently accessed) by
the Router. It should be noted that the integration of this
component into KVCG is made in a way the Hot Cache de-
sign and implementation can be independently replaced and
optimized with respect to KVCG.
The Hot Cache is implemented as a readers-writer lock-

based hashmap, where each bucket consists of a linked list
of nodes containing 8 elements each. The hashmap is pre-
allocated based on an initial memory budget, but can expand
beyond that in the case of conflicts. However, given that each
node consists of 8 elements, we expect this to be rare.

After locking the bucket corresponding to the target key,
each operation performs its necessary work then releases the
lock. Operations on keys that are present in the cache simply
update, delete or return the existing value. When there is no
entry corresponding to the key, then some additional steps
are required. In more detail:
- PUT. If the entry already exists, then it simply updates the
value. A PUT operation on a non-resident key reserves an
unused entry – allocating a new node as necessary – and
populates it with the value contained in the request.

- DELETE. For existing keys, the entry is simply marked as
deleted. For non-cached keys, a DELETE will reserve a new
entry – again allocating nodes as needed – and mark it
as deleted to serve as a tombstone for future operations.
A subsequent GET can therefore be serviced immediately
without querying the Canonical Store. Similarly, subse-
quent PUT operations need not to allocate memory for the
new key, but can operate directly on the existing entry.

- GET. If the bucket contains an entry corresponding to a key,
and the value is not logically deleted, its value is returned.
When a miss occurs (i.e., there is no entry for the key) the
request is added to a GRB to be executed on the GPU. A
special flag indicates that this request originated from a
miss and instructs the GPU thread responding to populate
the cache after the operation completes.

Recall that the key space is partitioned between the Hot
Cache and the Canonical Store, hence requests remain con-
sistent through the underlying concurrency control of each
storage component. However, when the model changes, all
DELETE and PUT operations made on the Hot Cache must
be propagated to the Canonical Store at the moment the
model changes. Hence, in addition to generating and updat-
ing entries in the Hot Cache, update operations (i.e., PUT
and DELETE) should be logged. This log is implemented as a
secondary hashmap with a one-to-one mapping between it
and the Hot Cache. It is stored in contiguous memory to ease

scan operations and capture the most recent updates made
to keys on the Hot Cache that must be propagated to the
Canonical Store. The next subsection describes this process.

6.1 Replaying Logged Operations
The goal of the Hot Cache is to make frequently accessed
keys available to application requests so that they can be
executed with low latency. Our system is designed to do
so while adapting to changing workloads by dynamically
updating the Router’s model in response to new patterns.
During this process we must ensure that operations maintain
correctness. With keys whose hot-cold assignment does not
change, there is no risk for inconsistency since each compo-
nent guarantees linearizability. For keys that were originally
cold but become hot, the cache miss policy will provide the
most up-to-date version from the Canonical Store. However,
if a key was previously hot, but now cold, any future request
routed to the GPU must observe the most recent value.
The moment the model is updated marks the start of a

new epoch for requests. Requests that had previously been
hot may now be cold and therefore destined for the GPU. As
such, it is crucial to maintain the consistency as this change
is made. Before new requests can be served, any update to
the Hot Cache must be reflected in the Canonical Store. As
mentioned, we maintain a log of updates performed during
the previous epoch. These logged requests are batched and
enqueued on the GRB queue. Once the log is replayed on the
Canonical Store, new update requests can be served since
any operations going to the Canonical Store will be ordered
after the replayed log. Note that it is sufficient to only replay
the last epoch as requests of prior epochs will already be
present on the Canonical Store. In other words there is only a
single epoch of requests outstanding on the Canonical Store.

6.2 Cleaning the Hot Cache
Another important part of ensuring consistency is the re-
moval of cache entries for keys that are no longer hot. Under
our assumptions, the size of the entire data repository can fit
in main memory. A consequence of this is that evictions from
the Hot Cache are not performed to make room on the cache,
as traditionally done [31, 45], but rather to remove keys that
are no longer hot. This work is performed by a helper thread
every time the model in the Router changes. When that hap-
pens, the thread iterates over the Hot Cache removing all
entries that are cold according to the new updated model.
To guarantee correctness (i.e., linearizability) of opera-

tions, the helper thread must complete its eviction before
any subsequent model changes. The above requirement com-
bats the case in which some model,𝑚1, specifies a given key
as hot; its successor, 𝑚2, classifies the key as cold; then a
third model,𝑚3, again labels the key as hot. In this scenario,

KVCG: A Heterogeneous Key-Value Store for Skewed Workloads SYSTOR ’21, June 14–16, 2021, Haifa, Israel

if the key is not evicted from the cache when𝑚2 is active
then an operation directed to the Hot Cache by𝑚3 may ob-
serve a value written when𝑚1 routed requests. All keys that
are no longer hot are removed from the Hot Cache upon
each model transition to ensure no stale values are read.
It is important to note that KVCG exploits the massive

parallelism of the Canonical Store when replaying the logged
operations. Accordingly, we envision a quick transitioning
process (e.g., < 500ms in our experiments).

7 THE ROUTER
KVCG relies on the Router to decide which keys are hot and
which are cold at runtime, and route them to the appropriate
store for execution. A machine learning based classifier, de-
noted in this paper as the model, is integrated into the Router
and its purpose is to accept a key and the hash of that key
as input and simply return a classification of that key as hot
or cold. KVCG then adapts to reflect the classification made
by the Router. Thanks to its design, other models can also
be used in the Router to tailor it to the application’s needs.

While running KVCG, a shadow model is trained by sam-
pling incoming requests. Periodically, the shadow model
replaces the current model with the goal of continuously
adapting the partitioning of the store between Hot Cache
and Canonical Store in order to meet workload changes.

Replacing the current instance of the model is done with-
out impacting the correctness of ongoing operations. In order
to do that, a lock is held for the entire duration of the process
to prevent triggering another model change. Once the lock
is acquired, all incoming update operations must retry on
the Hot Cache while ongoing operations and new GET opera-
tions complete on the Hot Cache. After that, PUT and DELETE
operations on the Hot Cache are replayed on the Canonical
Store utilizing the process described in Section 6.1.
After that, the model can be updated and the Hot Cache

resume serving all operations. Evictions of no-longer-hot
keys should now occur on the Hot Cache; this is done using
the procedure described in Section 6.2. After the eviction is
complete, the lock is released.

During the change of the model, the Canonical Store and
Hot Cache can execute previously enqueued operations. This
is because any request previously enqueued for execution
on the Canonical Store will be able to access the most up-to-
date values by relying on the step (described previously in
Section 6.2) that replays the latest Hot Cache operations on
the Canonical Store. After the Hot Cache resumes execution,
all operations previously batched and still to be executed on
the Canonical Store are effectively concurrent with opera-
tions to be executed on the Hot Cache. Correctness is still
guaranteed in this case, as shown below.

Let us consider a key 𝑘 previously classified as cold and
currently hot according to the new model. Let us also con-
sider an operation 𝑜𝑖 on 𝑘 that was batched for execution on
the Canonical Store before the changing of the model started.
If a new conflicting operation 𝑜 𝑗 is issued after the model
is changed, then it will be routed to the Hot Cache. At this
moment, 𝑜𝑖 and 𝑜 𝑗 are conflicting and operating concurrently
on the two stores of KVCG. In this case, Linearizability is
maintained since these operations are concurrent thus no
order must be enforced between them. Anyway, due to the
installation of the new model, all new requests will then be
routed to the Hot Cache and therefore any possible update
of the value of 𝑘 in the Hot Cache will be the one finally read
by future operations. Eventually, future evictions will reflect
the most recent value of 𝑘 in the Canonical Store.
In our implementation we use a histogram trained on

the incoming client requests at runtime. We set a threshold
where any bucket of keys accessed at a proportion above the
threshold is classified as hot (e.g. a threshold of 0.1 means that
any bucket where the proportion of total accesses is greater
than 0.1 is classified as hot). We find experimentally that a
well-trained model alleviates contention on the Canonical
Store and on the Hot Cache, especially in the presence of
skewed workloads (see Section 8.4 in the evaluation study).

8 EVALUATION
We evaluate the design of KVCG by comparing performance
with our primary GPU-based competitor MegaKV [45], as
well as a high-performance CPU-only concurrent hashmap,
MICA [31]. Additionally, we include two special configura-
tions of KVCG that correspond to a GPU-only version (i.e.,
just the Canonical Store), we denote as KVG, and a CPU-only
version (i.e., just the Hot Cache), we name KVC.

The testbed consists of two Intel Xeon Platinum 8160
CPUs, totaling 48 available cores, with hyperthreading dis-
abled, and a GeForce GTX 1080 GPU with 2560 CUDA cores
across 20 SMs. For each competitor we tune the number of
CPU threads and GPU streams to maximize their respective
performance. All systems, but MICA, use a batch size of
512. MICA leverages all available CPU threads and extends
batch size to 4096 requests to guarantee high utilization;
KVCG utilizes only a single NUMA zone (24 cores) for the
Hot Cache to reduce hardware contention. Because of its
pipelined architecture, we empirically verified that MegaKV
performs best with 10 CUDA streams. In addition to the 24
cores dedicated to the Hot Cache, KVCG also allocates 10
threads to handle GPU streams on the Canonical Store.

Unless otherwise stated, the key-range of each competitor
is fixed to 1 billion keys to reflect large stores, the hash table
is prefilled with 10 million key-value pairs. We report both
latency and throughput results averaged across 512 million

SYSTOR ’21, June 14–16, 2021, Haifa, Israel d. Miller et al.

requests executed in a closed loop. Update operations are
performed such that the final load factor is close to the start-
ing load factor. All experiments measure performance under
a workload following a Zipfian distribution provided by the
YCSB benchmark [20]. To emulate application workloads
with varying skew, we report results at different values of
theta (𝜃). Finally, all competitors use the same hash function:
𝐻 (𝑥) = 𝑥%𝑠 , where 𝑠 is the size of the data repository.

KVCG is implemented from the ground up in C++ and the
GPU kernels are written using CUDA 11.2. We also reimple-
ment our primary competitor (i.e., MegaKV [45], available
at [9]) in the same environment. We replace the underlying
GPU hash table (i.e., libgpuhash) with the same Slab hash
table that is used for KVCG’s Canonical Store. Table 1 demon-
strates that even for a single-warp block, this replacement im-
proves GET and PUT performance by about 2x, albeit DELETE
operations are slower because MegaKV’s libgpuhash lever-
ages a lock-free logical deletion. Under the read-intensive
workloads evaluated, we believe a Slab-based MegaKV to be
a more suitable competitor.

Operation Throughput Slab libgpuhash
PUT (MOPS) 61.0 27.3

DELETE (MOPS) 120.4 233.5
GET (MOPS) 269.7 160.0

Table 1: Slab versus MegaKV’s libgpuhash

In all of our experiments, we implement KVCG’s model to
be an approximation of the workload to capture the incom-
ing requests without matching them perfectly. To do so, we
use a histogram model that splits the key space into 10,000
bins. During training, a bin accessed at a proportion above
a predefined threshold is classified as hot. At inference, if
a request’s target key falls within a hot bin, the request is
routed to the Hot Cache. Note that when calculating perfor-
mance metrics, a miss in the Hot Cache counts towards the
Canonical Store since it is the first time accessing this missed
key after the model changed and the request is loading it
from the GPU. Misses are expected to occur infrequently if
the model accurately reflects the application workload.

The rest of the evaluation section is organized as follows.
First, we explore KVCG in isolation with 8-byte keys and
values in Section 8.1. Then, in Sections 8.2 and 8.3, we explore
how KVCG compares to competitors. Later, in Section 8.4, we
explore how the model impacts the performance of KVCG.
In the legends of the included plots, we use HC to refer to
the Hot Cache and CS to refer to the Canonical Store.

8.1 Analysis of KVCG performance
We begin our discussion with an experiment to demonstrate
the performance of KVCG for 8-byte values across various

workloads. Figure 3a shows how our system responds to an
increase in skew. For this experiment, we use the aforemen-
tioned histogram model from Section 7 with a threshold of
1.3 ∗ 10−5 to approximate the incoming workload. For each
skew, we retrain the model on 5 million requests.

In any key-value storage system, we expect that the overall
throughput decreases as the skew becomes greater because
of higher contention on the internal data store. KVCG is able
to adapt to this change by offloading hot requests to the Hot
Cache, which can be observed in the steady increase in the
Hot Cache’s overall proportion of the achieved throughput.
Although latency of requests to hot keys increases with the
skew, it remains below 0.15ms until a skew of 0.9; after that,
it only increases up to 0.32ms. Because of the massive paral-
lelism offered by the Canonical Store, and the general lack of
contention, we observe the highest overall throughput at the
lowest skew. This, however, is at the cost of higher latency
due to more processing on the GPU. While routing requests,
each classification takes 315 ns on average.
Next, in Figure 3b we measure throughput and mean la-

tency for the system when fixing the skew to 𝜃=0.5 and
varying the percentage of keys that are classified as hot by
the Router. We choose 0.5 (𝛼 = 2) since this is the highest
theta reported by Twitter in their read heavy workloads [44].
The model for this experiment uses prior knowledge, cor-
responding to the Zipfian distribution used to generate the
workload, to classify a fixed proportion of the most popular
keys as hot. Because of the skew, a small fraction of hot keys
may result in a larger proportion of overall requests. In other
words, when the Router only considers 0.1% of the key space
as hot, the Hot Cache serves 1.83% of the overall requests.
An interesting trend emerges when we consider a scenario
where all operations are routed to the GPU only. In this case,
throughput remains relatively high, but at the cost of an
average latency of 0.82ms.
It is of note in Figure 3b that KVCG performs best when

few operations are fulfilled by the Hot Cache. When many
requests are routed to the Hot Cache, the utilization of the
GPU is low and the Canonical Store is unable to provide
high throughput. With few requests routed to the Hot Cache
however, few requests get low latency. When running KVCG,
we look to find the trade off between throughput and latency.
By routing the hottest 0.1% of requests to the Hot Cache, we
provide much lower latency (i.e., 131.7us) for those requests
while retaining similar latency and throughput on the GPU.

Up to 0.1% of the keyspace being considered hot, the
throughput is greater than 40 Mops. Between 0.1% and 10%,
there is a drop in performance because the Canonical Store
is not fed enough requests. To the extreme, when all requests
are served by the Hot Cache, the throughput is low and the
latency is high because contention prevents the Hot Cache
from performing well. We do notice some of the requests

KVCG: A Heterogeneous Key-Value Store for Skewed Workloads SYSTOR ’21, June 14–16, 2021, Haifa, Israel

(a) Varying 𝜃 . (b) Varying Partitioning. 𝜃=0.5. (c) Varying Value Size. 𝜃=0.5.

Figure 3: Throughput and mean latency of KVCG. Reads are 95%; Writes are 5%. Skew is noted as 𝜃 .

where 100% of the requests are routed to the Hot Cache are
executed by the GPU. This is because compulsory-misses,
misses that initially occur because the key is not present in
the Hot Cache, occur and are counted as GPU execution.

Figure 4: CDF of Hot Cache. 95% read ratio. 8B values.

These trends help to highlight both the importance of the
model and the impact of contention on the Canonical Store.
If the model classifies too many operations as hot, then it can
have a detrimental impact on performance. While the Hot
Cache provides superior latency over the Canonical Store,
the massive parallelism provided by the GPU is important
to support higher throughput, especially when operations
are non-conflicting. In doing so, KVCG can achieve good
performance relative to the respective needs of operations.

When considering the impact of value size on performance
in Figure 3c, we find that the size of the value up to 256B
minimally impacts the performance of KVCG. The same
trend emerged for all other competitors, which also rely on
indirection to handle variable sized values.

We also explore the cumulative distribution function, CDF,
of the latency for the Hot Cache in Figure 4 and find that
while serving a lower proportion of the requests (a lower
theta), the latency is lower at most points. As the theta in-
creases, a higher proportion of requests are served on the
Hot Cache and there is contention on the keys. This creates
greater tail latency.

8.2 Varying Read/Write Ratio
We evaluate KVCG against MegaKV, KVC, KVG, and MICA
by varying the read/write ratio at 𝜃=0.5 with 8B keys and
values. In addition to the competitors, KVCG latency is re-
ported for each component (i.e., the Hot Cache and Canonical
Store). When considering throughput, we include both their
individual contributions along with the total.

(a) Mean Latency (b) Throughput

Figure 5: KVCG and competitors varying % of
read /write operations. Skew 𝜃=0.5. 8B value sizes.

In Figure 5a we note that KVC has high mean latency
when compared to other components. This is because the
Hot Cache was designed and optimized to serve few requests.
When KVC has to serve the entire data store, there is high
contention which causes high latency. MegaKV has high
latency because of its secondary index. In fact, with more
update operations, MegaKV needs to modify the secondary
index more, which causes a significant latency penalty. On
a read-only workload, MegaKV has lower latency than the
Canonical Store in KVCG and KVG because it has the lock-
free structure of Slab while L-Slab requires acquiring locks.
At 𝜃=0.5, KVG and KVCG’s Canonical store have similar

performance. KVCG on the other hand is able to keep up
with the throughput of KVG while providing low latency
operations on hot keys.

SYSTOR ’21, June 14–16, 2021, Haifa, Israel d. Miller et al.

KVCG’s Hot Cache shows slightly lower latency than
MICA (0.11ms versus 0.17ms at 80%). MICA’s throughput
is however lower than the GPU’s. KVCG is the best choice
when a throughput greater than 35.4 MOPS is needed, but
an average latency below 1ms is desirable.

8.3 YCSB Standard Skew
In Figure 6 we evaluate KVCG against competitors with a
traditional YCSB workload B, which consists of 95% reads
and 5% updates using 𝜃=0.99. We evaluate two thresholds: T1
is the 1.3 ∗ 10−5 threshold we chose for theta 0.5; T2 is 0.005.
Similar to the plots in Figure 5, we find that KVC performs
poorly. The latency is above 1ms while the throughput is
low. MegaKV has similar issues to Figure 5, where the utiliza-
tion of the secondary index impacts the performance. MICA
similarly has a low throughput and low latency.

(a) Mean Latency (b) Throughput

Figure 6: Performance of KVCG and competitors.
Skew 𝜃=0.99. 8B values. 95% reads/5% writes.

The most interesting change from theta 0.5 to 0.99 is that
KVG performs better than KVCG at both T1 and T2. Its la-
tency is only slightly greater than the latency of CS at T2,
while the throughput is more than 2x. Although 0.99 is heav-
ily skewed, L-Slab is able to perform well enough to achieve
a large throughput when it receives enough operations to
handle. At both T1 and T2, the Canonical store is unable to
receive enough requests per second workload to provide a
significant throughput. This is due to few keys being heav-
ily accessed at a 𝜃=0.99. Changing from T1 to T2 yields an
increase in throughput, but compared to going from a T2 (a
threshold of 0.005) to KVG (a threshold of >1), it is unable to
achieve as much of a gain in performance. KVCG however
is able to run with a lower latency on Hot Cache when com-
pared to KVG. When using KVCG at this high a skew, a high
threshold should be chosen if using a histogram model.

8.4 Changing the Model
One of the fundamental components of our design is the
Router, which decides whether requests are to be served by
the Hot Cache or the Canonical Store. In this experiment
we aim to understand the impact that our dynamic model

switching protocol has on performance. Additionally, we
wish to demonstrate the importance of a well-trained model.

Figure 7: Moving average of system latency over time
when changing the model.

To accomplish the above, we execute requests while train-
ing the model in the Router and then update it during execu-
tion. Initially, KVCG handles requests using a poorly trained
model. At time 0s, a shadow model is trained for 5 million
requests using a histogram with 10,000 bins and a threshold
of 1.3 ∗ 10−5 as described before. Once trained, the model is
installed at time 1.3s, which completes 340ms later.

Figure 7 shows latency as the model changes. At first, the
highest ranked keys in the distribution are served in the
Canonical Store because the model misclassifies requests.
When the model switches, the latency of requests in the
Canonical Store increases as the Hot Cache’s log is replayed
and compulsory-misses are enqueued for processing on the
GPU. At 2.54s, these outstanding requests are completed,
and the Canonical Store returns to less than 0.9ms latency.
Note that once the highest-ranked keys are populated in the
Hot Cache those requests are served with a latency of 0.1ms.
We envision these transitions in workload and therefore the
model to be infrequent similar to how Facebook’s workloads
exhibit high temporal locality in a short period (i.e. one hour)
that decays exponentially over time [41]. We can expect the
majority of the time to be spent with less than 1ms Hot Cache
and Canonical Store latency.

9 CONCLUSION
We have presented KVCG, a cooperative heterogeneous key-
value store designed to accelerate skewed workloads by of-
floading requests to less frequently accessed keys to the GPU.
Our design, which includes classifying requests at runtime,
effectively juggles requirements of modern applications by
providing low-latency operations on hot keys, meanwhile
supporting high overall throughput by leveraging the GPU
for requests on cold keys.

ACKNOWLEDGMENTS
Authors thank our shepherd and all anonymous reviewers
for their important comments. This material is based upon
work supported by the Air Force Office of Scientific Research
under award number FA9550-17-1-0367 and by the National
Science Foundation under Grant No. CNS-1814974.

KVCG: A Heterogeneous Key-Value Store for Skewed Workloads SYSTOR ’21, June 14–16, 2021, Haifa, Israel

REFERENCES
[1] 2018. How to Access Global Memory Efficiently in CUDA C/C

Kernels. https://devblogs.nvidia.com/how-access-global-memory-
efficiently-cuda-c-kernels/

[2] 2021. https://www.mysql.com/
[3] 2021. https://www.nvidia.com/en-us/geforce/graphics-cards/30-

series/
[4] 2021. https://www.amd.com/en/products/cpu/amd-ryzen-

threadripper-3990x
[5] 2021. https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
[6] 2021. https://cloud.google.com/gpu
[7] 2021. Azure VM sizes - GPU - Azure Virtual Machines. https:

//docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
[8] 2021. CUDA C Programming Guide. https://docs.nvidia.com/cuda/

cuda-c-programming-guide/index.html
[9] 2021. MegaKV Github. https://github.com/pzrq/megakv
[10] 2021. Parallel Thread Execution ISA Version 7.1. https://docs.nvidia.

com/cuda/parallel-thread-execution/index.html
[11] Jade Alglave, Mark Batty, Alastair Donaldson, Ganesh Gopalakrish-

nan, Jeroen Ketema, Daniel Poetzl, Tyler Sorensen, and John Wick-
erson. 2015. GPU Concurrency: Weak Behaviours and Program-
ming Assumptions. ACM SIGPLAN Notices 50 (05 2015), 577–591.
https://doi.org/10.1145/2775054.2694391

[12] S. Ashkiani, M. Farach-Colton, and J. D. Owens. 2018. A Dynamic
Hash Table for the GPU. In 2018 IEEE International Parallel and Dis-
tributed Processing Symposium (IPDPS). 419–429. https://doi.org/10.
1109/IPDPS.2018.00052

[13] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike
Paleczny. 2012. Workload Analysis of a Large-Scale Key-Value Store.
SIGMETRICS Perform. Eval. Rev. 40, 1 (June 2012), 53–64. https://doi.
org/10.1145/2318857.2254766

[14] Rajesh Bordawekar and Pidad Gasfar D’souza. 2018. Evaluation of
Hybrid Cache-coherent Concurrent Hash Table on Power9 System
With Nvlink 2. http://on-demand.gputechconf.com/gtc/2018/video/
S8172/

[15] A. Brownsword, W. W. Fung, I. Singh, and T. M. Aamodt. 2012. Kilo
TM: Hardware Transactional Memory for GPU Architectures. IEEE
Micro 32 (03 2012), 7–16. https://doi.org/10.1109/MM.2012.16

[16] Zhichao Cao, Siying Dong, Sagar Vemuri, and David HC Du. 2020.
Characterizing, Modeling, and Benchmarking RocksDB Key-Value
Workloads at Facebook. In 18th USENIX Conference on File and Storage
Technologies. 209.

[17] Daniel Castro, Paolo Romano, Aleksandar Illic, and Amin M. Khan.
2019. HeTM: Transactional Memory for Heterogeneous Systems.
arXiv:cs.DC/1905.00661

[18] Daniel Cederman, Philippas Tsigas, andMuhammad Tayyab Chaudhry.
2010. Towards a Software Transactional Memory for Graphics Proces-
sors.. In EGPGV. 121–129.

[19] S. Chen, L. Peng, and S. Irving. 2017. Accelerating GPU hardware
transactional memory with snapshot isolation. In 2017 ACM/IEEE 44th
Annual International Symposium on Computer Architecture (ISCA). 282–
294. https://doi.org/10.1145/3079856.3080204

[20] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan,
and Russell Sears. 2010. Benchmarking cloud serving systems with
YCSB. In Proceedings of the 1st ACM Symposium on Cloud Computing,
SoCC 2010, Indianapolis, Indiana, USA, June 10-11, 2010, Joseph M.
Hellerstein, Surajit Chaudhuri, and Mendel Rosenblum (Eds.). ACM,
143–154. https://doi.org/10.1145/1807128.1807152

[21] Intel corp. 2021. Intel 64 and IA-32 Architectures Software Developer’s
Manual Volume 2: Instruction Set Reference. (2021).

[22] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, and
Miguel Castro. 2014. FaRM: Fast remote memory. In Proceedings of the
11th USENIX Conference on Networked Systems Design and Implemen-
tation. 401–414.

[23] Brad Fitzpatrick. 2004. Distributed caching with memcached. Linux
journal 2004, 124 (2004), 5.

[24] Wilson W.L. Fung and Tor M. Aamodt. 2013. Energy efficient GPU
transactional memory via space-time optimizations. In Proceedings of
the 46th Annual IEEE/ACM International Symposium on Microarchitec-
ture. ACM, 408–420.

[25] Eran Gilad, Edward Bortnikov, Anastasia Braginsky, Yonatan Gottes-
man, Eshcar Hillel, Idit Keidar, Nurit Moscovici, and Rana Shahout.
2020. EvenDB: optimizing key-value storage for spatial locality. In
EuroSys ’20: Fifteenth EuroSys Conference 2020, Heraklion, Greece, April
27-30, 2020, Angelos Bilas, Kostas Magoutis, Evangelos P. Markatos,
Dejan Kostic, and Margo I. Seltzer (Eds.). ACM, 27:1–27:16. https:
//doi.org/10.1145/3342195.3387523

[26] Google. 2019. LevelDB. https://github.com/google/leveldb.
[27] Mark Harris. 2013. Unified Memory in CUDA 6.
[28] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST:

Fast, Scalable and Simple Distributed Transactions with Two-Sided
({RDMA}) Datagram RPCs. In 12th {USENIX} Symposium on Operat-
ing Systems Design and Implementation ({OSDI} 16). 185–201.

[29] Ang Li, Gert-Jan van den Braak, Henk Corporaal, and Akash Kumar.
2015. Fine-grained synchronizations and dataflow programming on
GPUs. In Proceedings of the 29th ACM on International Conference on
Supercomputing. ACM, 109–118.

[30] Wenqiang Li, Guanghao Jin, Xuewen Cui, and Simon See. 2015. An
Evaluation of Unified Memory Technology on NVIDIA GPUs. 2015
15th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (2015), 1092–1098.

[31] Hyeontaek Lim, Dongsu Han, David G Andersen, and Michael Kamin-
sky. 2014. {MICA}: A holistic approach to fast in-memory key-value
storage. In 11th {USENIX} Symposium on Networked Systems Design
and Implementation ({NSDI} 14). 429–444.

[32] Hagar Meir, Dmitry Basin, Edward Bortnikov, Anastasia Braginsky,
Yonatan Gottesman, Idit Keidar, Eran Meir, Gali Sheffi, and Yoav Zuriel.
2020. Oak: a scalable off-heap allocated key-value map. In PPoPP ’20:
25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, San Diego, California, USA, February 22-26, 2020, Rajiv
Gupta and Xipeng Shen (Eds.). ACM, 17–31. https://doi.org/10.1145/
3332466.3374526

[33] P. Misra and M. Chaudhuri. 2012. Performance Evaluation of Con-
current Lock-free Data Structures on GPUs. In 2012 IEEE 18th In-
ternational Conference on Parallel and Distributed Systems. 53–60.
https://doi.org/10.1109/ICPADS.2012.18

[34] Jacob Nelson, dePaul Miller, and Roberto Palmieri. 2020. Don’t
forget about synchronization! Guidelines for using locks on graph-
ics processing units. Concurrency and Computation: Practice
and Experience n/a, n/a (2020). https://doi.org/10.1002/cpe.5757
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5757

[35] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, et al. 2013. Scaling memcache at facebook. In Presented as part
of the 10th {USENIX} Symposium on Networked Systems Design and
Implementation ({NSDI} 13). 385–398.

[36] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Her-
man Lee, Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul
Saab, David Stafford, Tony Tung, and Venkateshwaran Venkataramani.
2013. Scaling Memcache at Facebook. In Presented as part of the 10th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 13). USENIX, Lombard, IL, 385–398. https://www.usenix.org/

https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/how-access-global-memory-efficiently-cuda-c-kernels/
https://www.mysql.com/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/
https://www.nvidia.com/en-us/geforce/graphics-cards/30-series/
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://www.amd.com/en/products/cpu/amd-ryzen-threadripper-3990x
https://docs.aws.amazon.com/dlami/latest/devguide/gpu.html
https://cloud.google.com/gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html
https://github.com/pzrq/megakv
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://docs.nvidia.com/cuda/parallel-thread-execution/index.html
https://doi.org/10.1145/2775054.2694391
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1109/IPDPS.2018.00052
https://doi.org/10.1145/2318857.2254766
https://doi.org/10.1145/2318857.2254766
http://on-demand.gputechconf.com/gtc/2018/video/S8172/
http://on-demand.gputechconf.com/gtc/2018/video/S8172/
https://doi.org/10.1109/MM.2012.16
https://arxiv.org/abs/cs.DC/1905.00661
https://doi.org/10.1145/3079856.3080204
https://doi.org/10.1145/1807128.1807152
https://doi.org/10.1145/3342195.3387523
https://doi.org/10.1145/3342195.3387523
https://github.com/google/leveldb
https://doi.org/10.1145/3332466.3374526
https://doi.org/10.1145/3332466.3374526
https://doi.org/10.1109/ICPADS.2012.18
https://doi.org/10.1002/cpe.5757
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.5757
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala

SYSTOR ’21, June 14–16, 2021, Haifa, Israel d. Miller et al.

conference/nsdi13/technical-sessions/presentation/nishtala
[37] Nikolay Sakharnykh. 2018. Everything You Need to Know About

Unified Memory. http://on-demand.gputechconf.com/gtc/2018/
presentation/s8430-everything-you-need-to-know-about-unified-
memory.pdf

[38] Anil Shanbhag, Samuel Madden, and Xiangyao Yu. 2020. A Study
of the Fundamental Performance Characteristics of GPUs and CPUs
for Database Analytics. In Proceedings of the 2020 ACM SIGMOD In-
ternational Conference on Management of Data (Portland, OR, USA)
(SIGMOD ’20). Association for Computing Machinery, New York, NY,
USA, 1617–1632. https://doi.org/10.1145/3318464.3380595

[39] Michael Stonebraker and Lawrence A Rowe. 1986. The design of
POSTGRES. ACM Sigmod Record 15, 2 (1986), 340–355.

[40] S. Xiao andW. Feng. 2010. Inter-block GPU communication via fast bar-
rier synchronization. In 2010 IEEE International Symposium on Parallel
Distributed Processing (IPDPS). 1–12. https://doi.org/10.1109/IPDPS.
2010.5470477

[41] Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. 2013.
Characterizing facebook’s memcached workload. IEEE Internet Com-
puting 18, 2 (2013), 41–49.

[42] Yunlong Xu, Lan Gao, Rui Wang, Zhongzhi Luan, Weiguo Wu, and
Depei Qian. 2016. Lock-based Synchronization for GPU Architec-
tures. In Proceedings of the ACM International Conference on Computing
Frontiers (Como, Italy) (CF ’16). ACM, New York, NY, USA, 205–213.
https://doi.org/10.1145/2903150.2903155

[43] Y. Xu, R. Wang, N. Goswami, T. Li, and D. Qian. 2014. Software Trans-
actional Memory for GPU Architectures. IEEE Computer Architecture
Letters 13, 1 (Jan 2014), 49–52. https://doi.org/10.1109/L-CA.2013.4

[44] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis
of hundreds of in-memory cache clusters at Twitter. In 14th USENIX
Symposium on Operating Systems Design and Implementation, OSDI
2020, Virtual Event, November 4-6, 2020. USENIX Association, 191–208.
https://www.usenix.org/conference/osdi20/presentation/yang

[45] Kai Zhang, KaiboWang, Yuan Yuan, Lei Guo, Rubao Lee, and Xiaodong
Zhang. 2015. Mega-KV: A Case for GPUs to Maximize the Throughput
of In-Memory Key-Value Stores. PVLDB 8, 11 (2015), 1226–1237. https:
//doi.org/10.14778/2809974.2809984

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/nishtala
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
http://on-demand.gputechconf.com/gtc/2018/presentation/s8430-everything-you-need-to-know-about-unified-memory.pdf
https://doi.org/10.1145/3318464.3380595
https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1109/IPDPS.2010.5470477
https://doi.org/10.1145/2903150.2903155
https://doi.org/10.1109/L-CA.2013.4
https://www.usenix.org/conference/osdi20/presentation/yang
https://doi.org/10.14778/2809974.2809984
https://doi.org/10.14778/2809974.2809984

	Abstract
	1 Introduction
	2 Related Work
	3 System Overview
	4 Execution Workflow
	5 The Canonical Store
	5.1 Lock-Based Warp-Cooperative Slab
	5.2 Memory Management

	6 The Hot Cache
	6.1 Replaying Logged Operations
	6.2 Cleaning the Hot Cache

	7 The Router
	8 Evaluation
	8.1 Analysis of KVCG performance
	8.2 Varying Read/Write Ratio
	8.3 YCSB Standard Skew
	8.4 Changing the Model

	9 Conclusion
	Acknowledgments
	References

