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Abstract—Remote direct memory access (RDMA) and non-
uniform memory access (NUMA) are critical technologies of
modern high-performance computing platforms. RDMA allows
nodes to directly access memory on remote machines. Multi-
processor architectures implement NUMA to scale up memory
access performance. When paired together, these technologies
exhibit performance penalties under certain configurations. This
paper is the first study to explore these configurations to provide
quantitative findings on the impact of NUMA for RDMA-based
systems. One of the consequences of ultra-fast networks is that
known implications of NUMA locality now constitute a higher
relative impact on the performance of RDMA-enabled distributed
systems. Our study quantifies its role and uncovers unexpected
behavior. In summary, poor NUMA locality of remotely accessible
memory can lead to an automatic 20% performance degradation.
Additionally, local workloads operating on remotely accessible
memory can lead to 300% performance gap depending on
memory locality. Surprisingly, configurations demonstrating this
result contradict the presumed impact of NUMA locality. Our
findings are validated using two generations of RDMA cards, a
synthetic benchmark, and the popular application Memcached
ported for RDMA.

Index Terms—RDMA, NUMA, Performance, Locality

I. INTRODUCTION

Remote Direct Memory Access (RDMA) is a technology
that boosts network interactions by providing not only faster
communication speed, but new features that allow a node to
access memory physically stored on another node without
needing to invoke software routines on the target machine
(called one-sided communication). RDMA network interface
cards (RNICs) are more expensive than the traditional Ethernet
counterparts [1] but still affordable for high-performance com-
puting infrastructures. In fact, RDMA-enabled computation is
widely deployed by many computing infrastructures, spanning
industry and academia, such as Microsoft Azure [27], Cloud-
Lab [36] and Chameleon [25].

As recently corroborated by several studies [11], [13],
[31], one-sided verbs represent the true innovation of RDMA
communication, opening up endless opportunities to redesign
existing algorithms and systems in order to fully exploit such
high-performance interaction. This paper presents the first
empirical study on the performance implication of RDMA
one-sided communication when deployed along side Non-
Uniform Memory Access (NUMA)1. While NUMA is a rec-

1A poster version of this paper is available at [29].

ognized challenge for RDMA-based systems [13], [41], no
comprehensive study exists characterizing one-sided verbs.

A NUMA server divides main memory into groups, where
each of these groups is directly connected with a set of
CPU-cores (typically a physical processor or CPU). Such a
organization allows a thread executing on a core to access
memory fast, if the requested address is located on the memory
module attached to its executing core. Otherwise, the access
latency is higher. NUMA represents the de-facto standard for
medium/large multicore servers. All current servers equipping
more than one physical processor are NUMA. Additionally,
single processor infrastructure with high number of cores can
be NUMA as well [35]. Many solutions have been proposed
to make existing technology NUMA-aware [5], [8], [9], [12].

Three factors motivate our investigation.
• First, RDMA and NUMA are two technologies that

belong to all high-performance computing infrastructures,
and they are meant to stay in the foreseen future since
NUMA is widely adopted and RDMA’s capabilities are
being rapidly explored in a multitude of settings [3], [14],
[25], [28], [36], [39], [41].

• Second, one-sided communication is the real innovation
underlying RDMA, and has the unique characteristic
of being agnostic to local server computation. This is
because memory transfers over RDMA are not scheduled
by the operating system or by any software component
in the server receiving the memory operation; the RNIC
operates autonomously. The implication of such a design
is that, although a remote operation shares hardware
resources with the local server, thus hardware contention
can affect its performance, the local server has no control
or visibility of the operation, therefore runtime optimiza-
tions are disallaowed (e.g., NUMA balancing [2]).

• Third, a growing number of distributed data repositories
(e.g., [22]) prefer storing data and metadata in main mem-
ory, while using replication to ensure fault-tolerance and
availability. Because of this deployment, understanding
the impact of NUMA on RDMA becomes essential for
subsequent improvements.

An example that summarizes the above conclusions is the
following. Let us assume two nodes in a cluster N1 and N2

and one application thread T running on node N2. When T
performs a read or write operation on a memory location that
is stored by N1, it performs a one-sided interaction, which



is directly handled by the RNIC of N1 without involvement
of N1’s operating system. The performance of T ’s memory
operation depends upon factors such as:

• the NUMA locality of the requested memory;
• the workload executing on N1, which might be memory

intensive and (over)loading the memory hierarchy.
None of these factors are under the control of T or N1,

which means that T ’s operations might be slowed down
because of reasons that neither T nor N1 can control.

To conduct our study, we develop and test a microbench-
mark and the well-known Memcached application [16], ported
to use RDMA [20]. We develop the former to isolate behaviors
stemming from RDMA in the presence of NUMA. We use
the latter to demonstrate the aggregate effects analyzed in
our microbenchmark. We configure our runtime to reflect
a real-world configuration as detailed by Facebook’s survey
in [4], which demonstrates that a large percentage of key-value
operation target data smaller than 64 bytes.

A quick summary of our finding is the following:
• access to memory on the same NUMA zone as the RNIC

can lead to 10-20% better performance, for an unladen
system;

• under local workloads, performance of NUMA-local ac-
cesses can be up to 300% worse than NUMA-remote;

• memory intensive independent workloads can reduce
performance as much as 50% when operating in the same
NUMA zone as remotely accessible memory.

Looking ahead, as the popularity of RDMA expands, the
performance of the RNICs themselves will improve. The
newest generation of hardware achieves an impressive sub-
600ns operation latency [1]. While the hardware used in this
evaluation study is not the most recent, we postulate that
our results will only become more pronounced in the newer
devices. This is because the penalty of NUMA is fixed. As
the access times for RDMA trend toward the upper bound of
local accesses, the penalty incurred for the extra hop across the
processor interconnect represents a higher relative cost. What
is currently 10%-20% degradation in performance imply even
higher losses with a faster RNIC.

To the best of our knowledge this is the first empirical
study on the performance implication of RDMA and NUMA
architectures in a distributed system. As stated earlier, what
makes our work unique is the focus on RDMA one-sided
interactions, which currently cannot be optimized by either
the receiving nor the sending server since these operations
are entirely handled by the hardware. We believe our findings
open up exciting new directions aiming at the exploitation of
RDMA one-sided interactions along with NUMA servers in a
less agnostic way so that remote accesses can be optimized
and not penalized.

The source-code of our implementations is available
at https://github.com/sss-lehigh/nurdma along with the raw
data collected for the experiments included in this paper,
instructions and scripts for execution and for plotting data,
as well as additional experiments.

II. BACKGROUND

Non-Uniform Memory Access (NUMA) and Remote Direct
Memory Access (RDMA) are two technologies widely used
by multicore servers and high-performance computing envi-
ronments; each solving a unique problem as systems scale up
and out. NUMA enables efficient memory access on multi-
processor machines [23], while RDMA lowers the network
overhead by avoiding unnecessary operating system’s context
switches (and change of mode) and memory copies [32].
The InfiniBand network protocol [17] supports RDMA at
the transport layer over a high throughput and low latency
interconnect. Together, clusters with tens/hundreds of cores
per node and sub-microsecond communication between nodes
can be realized. In the following two subsections we provide
implementation details of NUMA and RDMA to support the
terminology used in our evaluation study.

A. Non-uniform Memory Access
NUMA addresses the issue of memory bus contention for

multiprocessor machines, which can scale up to hundreds of
cores [23]. Concurrent memory access by a large number
of cores causes the memory bus to become a bottleneck for
system performance. To alleviate conflicts, NUMA partitions
both computing and memory resources into zones, with a
special interconnect between them. All system memory is still
shared by all cores, and all caches remains coherent, but now
contention for each zone’s memory bus is reduced if threads
only access memory in the same zone as the core they are
running on (called NUMA-local). However, accesses to remote
zones (called NUMA-remote) must pass over the interconnect
and thus incur additional overhead.

Fig. 1. High-level organization of a multi-processor machine with two NUMA
zones and the RNIC attached to NUMA 1.

Figure 1 illustrates the high level structure of NUMA archi-
tecture machines. Each processor is associated with a physical
module of memory, but all system memory is accessible over
the memory interconnect. Since NUMA-remote accesses are
slower, it is the applications best interest to maintain data
locality by binding pages to NUMA-local memory. Some
operating systems use NUMA balancing [2] to transparently
co-locate threads and memory in the same zone.

This diagram only shows two NUMA zones but modern
processors like the Intel Xeon E7 8800 series can support up
to an eight socket configuration [18]. As the number of sockets
grows, an inter-socket message may need to make multiple
hops to reach its destination, exacerbating the problem of



NUMA-remote memory access. The table in Figure 2 shows
memory access latency results in nanoseconds for a four-
socket machine of Intel Xeon Platinum 8160 processors with
a total of 192 cores.

Fig. 2. Memory access latency in nanoseconds in a server with 4 NUMA
zones. The diagonal values in bold correspond to NUMA-local accesses.

One consequence of the NUMA organization is that I/O is
also bound to a given zone, thus playing a role in networked
computation. External devices communicate with processors
through adapters that are physically connected to one NUMA
zone. Section II-C provides a more detailed explanation of this
aspect. The result is that memory accesses originating from a
device targeting an address whose page resides in NUMA-
remote memory must traverse the interconnect in order to be
served. As we will see in our evaluation, this can impact
the performance of RDMA despite an order of magnitude
difference between the network and interconnect latency.

B. Remote Direct Memory Access
RDMA gives a node the ability to remotely access the

physical memory of another node directly, without involving
the CPU of the remote node. Bypassing the CPU avoids two
significant overheads, which are present in standard TCP/IP
stacks. First, everything is performed in user-space so there is
no CPU overhead due to mode or context switches. Second,
direct memory access (DMA) is leveraged by the RDMA-
capable network interface controller (RNIC) to avoid unnec-
essary memory copies, as detailed below.

All RDMA interaction shares certain procedures to set up
communication and register remotely accessible memory. Each
endpoint maintains a queue pair (QP), which consists of a send
queue and receive queue. Work requests are added to these
queues during operation depending on the communication
protocol used. During creation, this structure is associated with
a remotely accessible memory region.

Endpoints exchange data via one-sided or two-sided verbs.
Two-sided verbs are somewhat analogous to the socket model
presented by TCP/IP. The name of this type of RDMA
communication is based on the fact that both sides are needed.
We avoid a detailed discussion of this form of communication
as it does not pertain to our study.

To issue a one-sided RDMA, the requester posts a work re-
quest containing local and remote addresses, size, and remote
key to their send queue to initiate the operation on remote
memory. These verbs only require action from the requester
and, in contrast to two-sided communication, the requester has
knowledge of the virtual address on the remote node. In the
case of read operations, remote data is copied to the local
address and a work completion is added to the completion

queue. For writes, the remote RNIC ACKs the request and a
work completion is added to the requester’s completion queue.
One-sided communications requires a reliable connection and
QPs cannot serve multiple connections [17]. Communication
is faster than for two-sided verbs with the caveat that scal-
ability can suffer when the number of connections increases
significantly.

As mentioned before, since one-sided interactions are ag-
nostic to the machine’s operating system and, at the same
time, they share the same physical hardware resources of the
local operating system and applications, their performance
can be significantly affected by factors that cannot be opti-
mized at runtime by either the requesting applications nor the
software on the receiving machine. One consequence of this
transparency is that NUMA balancing optimization [2] cannot
be employed to move memory pages between NUMA zones
because pages must be locked upon memory registration with
the RNIC.

C. NUMA and RDMA I/O
Modern architectures offer a mechanism for I/O to directly

access the last-level cache. For example, the Intel machines
used in this study use Data Direct I/O (DDIO) to achieve
direct cache access. Given modern I/O speeds and cache
sizes, it is practical to allow I/O to access cache to avoid
overhead. Previously, incoming data would be written to main
memory and local accesses would then read it into cache.
With technology like DDIO, I/O latency improves for accesses
to cached memory and local computation benefits from I/O
placing memory directly into the cache.

The intent of this technology is to transparently improve
latency and throughput for I/O operations. However, it is
important to note that this is currently only applicable to the
cache in the same NUMA zone as the I/O controller and is
enabled by default. Physical memory in the remote NUMA
zone is accessed by a normal DMA [18]. As we will address
in our evaluation, this behavior can act against RDMA and
negatively impact performance.

III. RELATED WORK

Extensive investigation of the role of NUMA locality in
system performance solidifies it as an important consideration
when designing high-performance applications to run on mod-
ern multicore machines. Integrating NUMA-awareness into
algorithms and data structures improves performance [8], [9],
[12], [24], [42].

Recent literature has been flooded with systems that exploit
RDMA for different types of computation. Because of its
reduced communication latency, RDMA is an ideal technology
for, but not limited to, distributed transactional systems [10],
[14], [20], [22], [39], [40], distributed shared-memory [3], [7],
[13], data transfer and storage [6], [33], and group commu-
nication [38]. Most systems using one-sided communication
implement a similar pattern that resembles the traditional
client-server model using one-sided writes for message passing
and one-sided reads for direct data access. Their designs



leverage the low latency and remote CPU bypass of one-
sided operations to achieve very high performance. Some of
these works address NUMA locality and attempt to mitigate
its impacts by pinning memory and threads to the NUMA zone
local to the RNIC. However, none of them offer an in-depth
study of the relationship between the two technologies and the
combined performance impact.

Kalia et. al [21] propose a set of guidelines for designing
high-performance RDMA systems. They explore the intri-
cacies of RDMA in terms of the low level details. We do
not directly address many of the optimizations described be-
cause they are specific to two-sided communications, such as
message in-lining and WQE shrinking. Their work highlights
the implications of the PCIe bus and RNIC architecture, but
their analysis fails to include a discussion on NUMA locality
of remote memory. One aim of our work is to provide an
additional resource for designing high-performance RDMA-
based systems.

Recent distributed systems use the combination of RDMA
interconnections and large multicore servers to test their per-
formance. Examples include FaRM [14], HydraDB [39] and
DrTM [40]. FaRM uses two RNICs and requires threads to
interact only with the RNIC in the same NUMA zone. To
address scalability FaRM allows QP sharing between threads
to pass messages, but only threads within the same NUMA
zone share a QP. Similarly, HydraDB ensures NUMA aware-
ness by co-locating memory and server processing threads and
deploying multiple instances on multi-socket machines. DrTM
explicitly partitions their TPC-C benchmark between NUMA
zones, such that all work is isolated to a single zone. In all
cases, NUMA locality is acknowledged but a conservative
approach is taken; its impacts are not quantified.

FaSST is a distributed in-memory transactional system
implemented using RPCs over two-sided communication [22].
It represents an important orthogonal discussion on the cost-
benefit analysis of one- and two-sided RDMA operations.
Additionally, from what we can surmise from the source
code, FaSST takes a similar approach to FaRM and DrTM
by pinning resources to the same NUMA zone as the RNIC.

The most explicit discussion of the impact of NUMA on
RDMA, that we are aware of, is presented by Wu et. al [41].
They propose a distributed graph engine, GRAM, which is de-
signed using FaRM’s message-passing mechanism. Their work
demonstrates that maintaining message buffers in the same
NUMA zone as the worker threads receiving the messages
can improve performance by 40%. Here the measured cost of
NUMA stems from locality with respect to the local threads
that access the memory, not the memory access performed by
the RNIC. In our evaluation study, we explore the latter and
demonstrate the impact of NUMA locality on the performance
of one-sided communication itself.

Similar to FaRM, Ren et. al [34] side step the effects of
NUMA in their end-to-end data transfer service by partitioning
data into each NUMA zone then using multiple RNICs, each
attached to a NUMA zone, to route accesses to the appropriate
zone. This induces a multiplicative effect on the number of

RNICs that are needed per machine, which in some cases
might not be supported by hardware and in all cases is more
expensive.

Another solution is Mellanox’s Socket Direct technology,
which shares a single RNIC between NUMA zones by splitting
16x PCIe connection into a form factor configured for two 8x
slots [26]. This allows two processor sockets to share the RNIC
while avoiding inter-socket communication. This approach has
two limitations. First, the bandwidth for a given socket is cut
in half due to the decreased width of the PCIe connection.
Second, if the system has more than two NUMA zones, then
the issues we discuss in this paper remain.

Other research looked into the similarity between NUMA
architectures and distributed systems leveraging RDMA,
proposing an implementation of an RDMA-based Distributed
Shared Memory [3]. The main idea is to treat remote memory
similarly to a NUMA node when designing algorithms. In
contrast to our investigation, this work does not address the
performance penalties incurred by memory locality and the
interplay between NUMA and RDMA.

The inevitability of NUMA means that completely elimi-
nating its penalty entails rethinking fundamental architectural
decisions. IOctopus [37] is a recent solution that attempts
to address this by re-imagining the PCIe device architecture
to mitigate the more expected results demonstrated in our
evaluation. Even so, the unexpected behaviors we encounter
relating to RDMA and DDIO on NUMA-local memory may
still be unavoidable under the proposed PCIe framework, as
none is commercially available yet.

To the best of our knowledge, the common approach is
to handle the NUMA penalty by conservatively allocating
remotely accessible memory on the same NUMA zone where
the RNIC is physically connected. Such a design limits the
available computing capability to the cores/threads scheduled
for execution on that NUMA zone and it disallows further
optimizations. Our work illuminates the coupling between
these two technologies so that future systems make take full
advantage of each of their potentials with confidence.

IV. EXPERIMENTAL SETUP

Our analysis starts with a client-server microbenchmark
designed to capture subtle interactions between the two hard-
ware components of interest. After understanding the physi-
cal implications of NUMA on RDMA performance of one-
sided verbs, we then demonstrate that NUMA locality indeed
plays a role in performance for more complex scenarios. We
choose an RDMA-based implementation of Memcached [20]
to explore the effects of NUMA in a real-world setting. The
microbenchmark isolates phenomenon to understand primitive
interactions; RDMA-memcached represents behavior for a
more complex application.

A. Locality
Before delving into our evaluation study, we first define

some terminology that will clarify our notions of locality. We
assume a RNIC-centric view of NUMA for each machine. In



other words, RDMA-local refers to the NUMA zone where
the RNIC is connected via the PCIe bus. Memory can also be
NUMA-local, which means it is physically mapped to the same
NUMA zone as accessing threads. Additionally, resources can
also be local or remote with respect to a given node.

To illustrate this, consider a two NUMA system like the
one in Figure 1, consisting of NUMA zones N1 and N2. Let
us assume the RNIC is attached to N1, thus any resource
in this zone is considered RDMA-local. Resources in N2

are considered RDMA-remote. Furthermore, if thread T1 is
running on N2, then T1 may access NUMA-local memory
residing in N2. Finally, if a client reads (writes) memory on
the server’s N2 then we refer to this as a RDMA read (write)
on RDMA-remote memory.

B. Testbed configuration
For the following experiments, we use nodes consisting of

two Intel Xeon E5-2670 v3 processors with a total of 48 cores
on each machine. For each physical core, the L1 data cache is
32 KB, the L2 cache is 256 KB and there is a 30 MB L3 cache
shared between all cores. All nodes in the system run Ubuntu
16.04 and are equipped with one Mellanox ConnectX-3 single
port RDMA adapter connected over a 56 Gbps InfiniBand
network. All of experiments are implemented in C++ using
version 4.5 of the Mellanox driver for Linux.

In addition to testing our results on the ConnectX-3, we
also validate the more surprising findings on the subsequent
generation of RNIC for consistency. In the modern RNIC
testbed, each machine has two 10-core Intel Xeon E5-2650
v3 processors with the same higher-level cache sizes as the
previous setup, a 25 MB L3 cache and a single Mellanox
ConnectX-4.

We do not explore the configuration where multiple RNICs
are connected to each machine because we believe it would
obfuscate our findings. In fact, it is possible to connect
multiple RNICs, where each is physically connected with
a different NUMA zone. As mentioned in Section III, the
common approach is to use a static assignments of software
resources with multiple RNICs to address some of the issues
highlighted by our evaluation study. However, even with this
design, large multiprocessor systems can easily deploy 8
NUMA zones. Equipping each single machine with 8 RNICs
would be significantly more expensive and would still not
change the outcome of our findings.

C. Workload characteristics
For the initial set of experiments we assume that the client

runs in a favorable configuration. That is, we bind all resources
to the RDMA-local NUMA zone such that it does not incur
any overhead due to NUMA locality. Under this assumption,
we restrict any behavioral outcome to stem from changes in
remotely accessible memory location or the server workload.
We address poor NUMA-awareness on the part of the client
when evaluating RDMA-Memcached in Section VI.

Based on our preliminary results, we fix the size of accesses
to be between 8 and 64 bytes. Atikoglu et. al report that in

Facebook’s key-value store, for the most general workload,
the majority of key and value sizes are less than 64 bytes [4].
Another class of workload consists of only requests with
keys of 16 or 21 bytes and value size of 2 bytes. Thus,
our configuration is representative of a real workload. Similar
statistics are reported by Nishtala et. al [30] and small key and
value sizes are used to test numerous state-of-the-art key-value
store designs [13], [15], [22].

As mentioned in Section II-B one-sided communication
requires dedicated QPs for every connection. Avoiding RNIC
cache misses on QP states is a known optimization for high-
performance RDMA [21]. We limit the number of QPs to
be fewer than 32 in the following experiments to probe
behavior without perturbing results with RNIC cache misses or
contention on RNIC resources. Similarly, we allocate remotely
accessible buffers smaller than a page to avoid RNIC address
translation overhead. Larger pages can be used to accomplish
the same result if large memory regions are required [13].

V. MICROBENCHMARK

The primary goal of our microbenchmark is to highlight the
primitive interactions between RDMA and NUMA for one-
sided verbs.

During initialization, the server creates a shared memory
region for remote operations and listens on a socket for client
connection requests. Once a connection is received, the server
sends the virtual address and access key to the client so
that the client can begin RDMA operations. The client and
server synchronize over sockets again to ensure initialization
is complete, then the client starts issuing remote accesses to
the buffer located on the server.

In a real world setting, other processes may run on a server,
either interacting with data stored in a remotely accessible
buffer or as an independent application. We mimic both
behaviors by concurrently running a synthetic workload or
by introducing load threads on the server. In both cases,
memory accesses and inter-socket communication impacts
performance of remote one-sided operations. As we will show
in Section V-D, architectural design can have a surprising
effect on performance when a local workload is introduced
on the server node.

In each experiment, every client connection issues 1,000,000
operations to the server, during which we record individual
client latency or throughput. Throughput is measured as the
average of 10ms-long instantaneous throughput taken during
execution. When measuring latency, we immediately poll for
completions after issuing the RDMA operation then calculate
the average and standard deviation per client, reporting the
overall average across all clients. For throughput, we average
the results of each connection over the course of the run, which
typically consists of 200 samples, then report the total system
throughput as the sum of each client’s average throughput.

Although the entire memory region is shared between QPs,
writes are non-conflicting. This is explicitly done to ensure that
clients do not interfere directly by accessing the same memory
addresses. Thus, memory allocated for remote access on the



server is equal to the number of connections multiplied by
the size of each access. For smaller access sizes false sharing
is possible. Each connection writes to disjoint but adjacent
addresses and the starting address of the memory region is
cache aligned.

A. Individual operation latency

As a preliminary motivation for subsequent experiments,
we first measure the latency of client one-sided reads and
writes as a function of the NUMA locality. The aim of this
simple experiment is to understand the baseline impact of
NUMA, if any, while controlling for additional factors, such as
server local workload. In this experiment, latency is measured
over one-million iterations of a closed loop for clients issuing
requests of 64 bytes, which corresponds to the maximum
individual write by a cache-coherent I/O operation and avoids
false sharing.

Hypothesis. We hypothesize that latency will degrade for
reads when the remotely accessed buffer is kept in the RDMA-
remote NUMA zone, primarily due to traversing the inter-
socket connection. Writes on the other hand are acknowledged
as they arrive at the server RNIC, so we expect to see similar
latency for both NUMA zones.

(a) Latency measured for varying numbers of QPs.

(b) Speedup of RDMA-local operations over their RDMA-remote
counterparts.

Fig. 3.

Findings. Figure 3(a) shows latency measurements for both
RDMA-local and RDMA-remote operations. To illustrate how
remote operations exercise the memory hierarchy of the remote
machine, no workload executes on the server. We can see from
this plot that when using more than 16 QPs, latency spikes.

We attribute this behavior to inherent limitations of the
RNIC, which involve the number of parallel execution units
as well as a small cache [13]. When limited to 16 or fewer

QPs, we observe that the additional load on the network
adapter does not significantly change latency. A round trip
for each operation ranges from 2.3µs to 2.5µs (2.4µs to
2.6µs) for RDMA-local (RDMA-remote) reads and 2.1µs to
2.5µs for both RDMA-local and RDMA-remote writes. Reads
are slower than writes because a data return is required. In
contrast, write acknowledgements are produced as soon as the
write is received by the server’s RNIC.

The speedup of RDMA-local latency over RDMA-remote
latency is shown in Figure 3(b), for up to 16 QPs. Our
simple test reveals a consistent 3-5% latency degradation for
RDMA-reads when the accessed memory region resides in the
RDMA-remote NUMA zone. We estimate the contribution of
DDIO and the socket interconnect to latency by measuring
local access times using Intel’s Memory Latency Checker
(MLC) tool [19]. Similar to Table 2 we measure local access
latency for our server node but also record L3 hit latency. As
previously discussed, DDIO does not utilize cache-coherent
operations when memory does not reside on the same NUMA
zone as the I/O. Local L3 access within a NUMA zone is 38ns
on our machines, estimating the time spent in the memory
hierarchy during an RDMA-read. Access to NUMA-remote
memory is 122ns. With respect to RDMA, our observed
difference of 3.6% over the 2.3µs baseline RDMA-read, to
RDMA-local memory, is due to both traversing the socket
interconnect and going to memory instead of leveraging cache.
Figure 3(b) also shows that, as expected, there is no significant
difference between write operations.

Although relatively small, the impact of NUMA is consis-
tent. For all runs with 16 or fewer QPs the standard deviation
was less than .01% of the average latency. In subsequent
experiments we will demonstrate that a 3.5% increase in
latency can lead to 10-20% worse throughput in the presence
of an independent workload. One peculiar result we observed
is a bi-modal distribution in access latency for more than 8
QPs. The first seven QPs created have lower average latency
than the remainder. When only 16 QPs are used, the difference
is small. However, a 5000ns differential is observed for 24
QPs and 12000ns for 32 QPs. Without fully understanding
the internals of the RNIC, we avoid speculating about the
cause of this behavior, although we suspect it relates to
caching QP contexts and how the RNIC schedules QPs to its
execution units. Regardless, for all subsequent experiments, we
turn our attention to throughput. This configuration serves to
demonstrate performance characteristics without introducing
additional bottlenecks, such as the RNIC itself.

B. Throughput of different RDMA access sizes

Demonstrating the impact of NUMA locality as a function
of access size informs the design of RMDA-based systems,
especially those with fine-grained memory accesses. In all
of our experiments the maximum transfer unit (MTU) is
256 bytes, which is the smallest configurable MTU for the
ConnectX-3 and also corresponds to the configured maximum
PCIe payload size of 256 bytes for the RNIC.



Fig. 4. Total throughput for 8 client connections with different memory access sizes at an MTU of size 256B.

Hypothesis. For RDMA-reads, we expect to see degradation
for RDMA-remote accesses, similar to our latency experiment.
However, the load induced by concurrent clients is now a fac-
tor because of the open-loop execution model. The additional
I/O is expected to heighten the impact of NUMA locality
because the remote memory hierarchy will be loaded. Again,
writes are acknowledged when received by the RNIC of the
remote machine and therefore we do not expect NUMA to
play a role.

Findings. Figure 4 shows the system throughput as RDMA
access size increases for 8 clients. Similarly to our experiments
on latency, the throughput of RDMA-writes are not affected by
NUMA locality. On the other hand, RDMA-reads consistently
see 5-7% worse throughput when RDMA-remote. Note that
NUMA locality does not influence throughput when messages
are segmented (i.e., size is greater than 256). This is because
more time is spent on network communication overshadows
the impact of RDMA-remote accesses.

Another observation is that the disparity between RDMA-
reads and RDMA-writes diminishes as access sizes increase.
In other words, reads and writes are impacted differently by
incrementally larger memory access sizes. RDMA-reads retain
over 80% of the throughput at 8 bytes through 1024-byte
accesses, while RDMA-writes are at 70% of the baseline.
Writes suffer in comparison to reads beyond 1024-byte ac-
cesses, which we attribute to the additional communication
needed between the RNIC and memory controller across the
PCIe bus. At 4096-byte accesses, both operation types have
similar throughput.

We also test larger MTU sizes to determine the impact, if
any, on system performance and NUMA locality assumptions.
A designer might elect to use a larger MTU if there is batching
at the application level. At larger packet sizes (i.e., greater than
256 bytes), the impact of NUMA is still present through 1024-
byte accesses. Regardless of changes in overall throughput, a
larger MTU does not eliminate the effects of NUMA locality
for smaller access sizes, which persists for individual RDMA
operations. Independent of MTU, throughput for 2048- and
4096-byte accesses was consistently lower and the impact of
NUMA is negligible, both resulting from other bottlenecks like
the need of undergoing multiple PCIe trips.

In summary, this experiment demonstrates that in config-

urations where throughput is not restricted by other aspects
of the complex interaction of RDMAs, the effects of NUMA
locality are visible across varied RDMA access sizes.

C. Independent application load
In this experiment we run an independent process which

allocates a buffer in memory and spawns threads that access
the buffer randomly. The memory footprint, the number of
threads and the read-write ratio are all configurable. Addition-
ally, we specify the NUMA locality of the buffer and threads
to examine their impacts on RDMA performance.

Hypothesis. When an independent workload executes con-
currently with remote memory accesses, we expect to see
performance decrease for RDMA-reads. The root of the
expected change stems from the contention on the server
machines memory subsystem. For the same reason as before,
we anticipate RDMA-writes to remain stable.

Findings. We first measure the throughput of one-sided
RDMA operations as a function of the size s of the buffer
while 128 threads randomly read and write with 50% proba-
bility each. This experiment is NUMA-agnostic, meaning the
workload threads and memory are not bound to a specific
NUMA zone on the server. As in the previous section, tests
consist of 8 QPs between the client and the server and read or
write 64-byte chunks of memory. With this configuration we
were surprised to see no impact on performance. However,
reducing the access size to 8 bytes demonstrated that for
RDMA-remote reads, the independent workload indeed plays
a role; restricting performance by as much as 20% of the no
load baseline. As the buffer increases in size, the effects of
NUMA locality also become more substantial.

Next, we study the impact of NUMA locality of the inde-
pendent workload and find that regardless of NUMA place-
ment, there is no substantial difference in throughput, thus
pointing toward contention on the QPI as the primary culprit
for the performance drop measured for a NUMA-agnostic
workload. This is because RDMA operations are transparent
to the remote machine, and therefore are susceptible to similar
performance characteristics as local accesses. In this case, the
local workload is enough to saturate the QPI and ultimately
impact performance. NUMA bound workloads, on the other
hand, do not saturate intra-processor network and therefore do
not impact RDMA performance.



In contrast to the previous experiments the calculated per-
formance drop is slightly more in this setting, and as we will
see in Section VI, the existence of an independent workload
has a much higher impact on overall performance when there
is server-side computation. In which case, the combined effects
seen in our microbenchmark impact performance to a much
larger degree.

D. Load on remotely accessible memory
As we mention, serving processes themselves are typically

not idle, but may perform computation on local data. Symmet-
ric distributed transactional systems, graph engines and dis-
tributed shared memory are all examples of this paradigm [7],
[10], [13], [40], [41]. To demonstrate the impacts of this
class of workload by introducing server load threads to our
microbenchmark, which operate on data that is also accessible
by remote clients.

(a) ConnectX-3.

(b) ConnectX-4.

Fig. 5. Percentage improvement in throughput for RDMA-local operations
over RDMA-remote on remote reads and writes by 8 client connections, with
increasing local load. Local load is 10% reads and 90% writes.

Worker threads are launched at server startup and begin
randomly accessing remotely accessible memory. Initially, use
a workload consisting of 90% writes and 10% reads. Client
connections then begin issuing operations to the server. In line
with the results seen in the previous experiment, we reduce the
size of the remote memory accesses to 8 bytes; again testing
with 8 connections. Note that all remotely accessible memory
can be stored in cache.

Hypothesis. Because the accessed memory is common to
both the local and remote workload, we expect to see higher
degradation than before for RDMA-reads in the presence of
a workload. RDMA-writes are expected to maintain perfor-
mance since they are ACK’ed immediately upon receipt by
the remote RNIC.

Findings. Our results reveal something entirely unexpected.
Under a local workload, one-sided RDMA writes to RDMA-
remote memory outperform their RDMA-local counterparts by
70-80% when more than 8 threads also accesses the same
memory region. That is, both memory and worker threads are
in the RDMA-remote NUMA zone. Under the same circum-
stances, RDMA-remote reads have 35% better throughput than
the RDMA-local operations.

This behavior contradicts the expectation that RDMA-local
operations should be preferred over RDMA-remote. Addi-
tionally, we see the largest performance impact for RDMA-
writes, which base on our previous experiments was not
anticipated to change. We save a full discussion of this for
Section VIII, but we note here that this is likely due to RDMA-
local operations directly accessing cache. Although DDIO is
designed to enhance I/O performance, in the presence of a
write-intensive local workload on remotely accessible memory,
DDIO actually hinders overall performance. On the other hand,
client operations to RDMA-remote memory use DMA and do
not interact with the local workload at the cache level. We
suspect cache pressure limits throughput for the integrated I/O
memory management unit, ultimately bottlenecking the RNIC.

To validate our empirical findings we rerun the 8-connection
and 8-byte configuration on a cluster equipped with Mellanox
ConnectX-4 RNICs and the same Intel servers, albeit with
slightly fewer cores. Figure 5(b) demonstrates that even on
the newer generation network adapter, the trend still holds. Re-
markably, on the new hardware the behavior is intensified, with
RDMA-remote writes outperforming RDMA-local writes by
3x. This suggests that the underlying interaction is not RNIC
specific, but is directly correlated to machine architecture. We
believe that DDIO plays an important role in the existence of
this trend.

We also tested various other configurations, including lower
write ratios, more client connections, larger access sizes and
the next generation RDMA card. Importantly, this unexpected
result remains when the workload is 1:1 reads and writes.
In this setting, we observe nearly 50% better performance
for RDMA-remote writes. When we increased the number
of connections to 32, we also observed similar behavior as
for the 8 connection results reported, but a muted response.
For higher than 8 worker threads there was 5%-20% better
performance for RDMA-remote writes. Finally, increasing the
size of each remote access to 64 bytes eliminated the behavior,
with RDMA-local returned to being slightly better perfor-
mance than RDMA-remote. This unanticipated performance
bug leads us to conclude that system designers requiring small
RDMA accesses should account for the potential impact of
local workloads on the behavior of their particular system.
Our results also show that traditional beliefs about NUMA
locality are not steadfast when it comes to I/O, and may be
contradicted with significant consequences.

It should be noted that we do not implement mutual
exclusion in this case, because it is not feasible between local
load and RDMA operations on the available RNIC. Reads and
writes are coherent, however, because of the underlying cache



coherence policy implemented by the machine hardware.

VI. RDMA-MEMCACHED

We also deploy an RDMA-based Memcached implementa-
tion [20] and measure performance against NUMA locality.
We follow the same principles as before to show behavior for
a real application. The setup is similar to our microbenchmark
with a Memcached instance serving clients emulated using the
provided memslap workload generation tool.

To the best of our knowledge, for less than 512 connections,
RDMA-Memcached uses one-sided communication. At larger
numbers of connections a hybrid approach is used to avoid
the memory cost associated with one-sided connections. Our
experiments target less than this threshold and therefore are
purely one-sided.

Memcached uses active messaging with one-sided RDMA
reads for all data transfers [20]. For puts, the client passes the
location of data to write then server reads data via RDMA
from the client to the key’s corresponding slot. To get a value,
the client first exchanges information about the location and
size of the value desired key, it then allocates a destination
buffer and RDMA reads the data from the server. Note that
both Put and Get leverage RDMA reads for data transfer.

We configure Memcached to execute as a single worker
thread responding to requests from a single client to pinpoint
the impact of resource locality. During execution, each key-
value pair is a total of 67 bytes, with the values being
64 bytes long. Keys and values are randomly filled with
alphanumeric characters. Client issue 90% reads and 10%
writes to Memcached. We report the average throughput of
10 trials of 100,000 operations per client connection.

Figure 6(a) shows throughput for varied number of client
connections when no load is running on the server. Mem-
cached becomes fully loaded after 4 connections and the
RNIC becomes saturated after 16 connections. We test three
scenarios: (1) both server and client are pinned to the RDMA-
local or (2) RDMA-remote zone in their respective nodes; or
(3) we bind the client to the RDMA-local zone and the server
to the RDMA-remote zone, similar to the microbenchmark.

It is clear from the plot that when no load is present
performance is best when both the client and the server are
RDMA-local. Moving each to the RDMA-remote zone has an
incrementally worse impact on overall throughput.

Figure 6(b) shows system performance for the same con-
figurations as before, except that a NUMA-agnostic load is
introduced. This load consists of the remainder of the server
threads, not being used by Memcached, randomly accessing a
large memory buffer, with a mix of 50% reads and 50% writes.
The load running on the server causes a significant impact in
overall performance for all configurations, but still we see a
10% decrease in performance due to being RDMA-remote.

Perhaps a more interesting case is when the workload is
bound to a specific NUMA zone. Figure 6(c) shows this case
where the load runs on the RDMA-local NUMA zone. When
the load is RDMA-local, RDMA-remote throughput is not
impacted by the load. We do not include the plot due to

space constraints, but when the load runs on the RDMA-
remote zone, RDMA-local memory accesses are not affected.
More importantly, for both cases the workload reduces RDMA
operations to the same NUMA zone by 40-50% for fewer than
24 connections. Therefore we expect 2x speedup for operations
to an unburdened NUMA zone over the loaded zone.

VII. ADDITIONAL FINDINGS

Over the course of our experimentation, we recorded inter-
esting trends that involve RDMA and the memory architecture,
and further contribute to the performance penalties discussed.

First, we observed that RDMA reads are not cache allo-
cating. That is, if the memory targeted by an RDMA read is
not already in the cache, then the cache will not be filled,
but rather the value will be retrieved from main memory
and performance will be about 3% worse. This behavior was
confirmed by performing to cache the data and measuring the
change in performance, then flushing the cache and measuring
the delta again.

Second, we noticed during our investigation of message
size that larger operations tend to have an inverse relation-
ship between locality and performance when they are not
segmented. In other words, if the MTU is larger than 1024
bytes and operations are larger than 256 bytes, then RDMA-
remote operations tend to outperform RDMA-local by 5-10%.

Finally, we attempted to measure the impact of DDIO by
disabling write allocating flows in the PCIe configuration
space of the root port to which our RNIC is connected.
Unfortunately, this disables optimizations that are necessary
for internal operations and leads to significantly worse perfor-
mance across the board. Further investigation in this direction
is necessary to fully dissect behavior when there is local work
on remotely accessible buffers.

VIII. DISCUSSION AND FUTURE DIRECTIONS

The relationship between NUMA and RDMA hinges on
a number of complex hardware interactions and depends on
system workload. Here we summarize our findings and give
the intuitions behind the observed behaviors. Then, we provide
general expectations for performance impacts of NUMA on
one-sided RDMA interaction. First, we give an itemized list
of our key findings, then provide more explanation below:

• When execution is not subjected to additional workloads,
remote reads to an RDMA-remote buffer can lead to 5-
10% worse performance.

• In the presence of an independent workload, RDMA-
remote operations can experience 2x slowdown for com-
plex applications.

• Workloads operating on remotely accessible memory that
is RDMA-remote are shown to have 3x better perfor-
mance than RDMA-local. Contradicting widely accepted
assumptions about NUMA locality.

In the case of an unloaded RDMA-Memcached server,
NUMA locality on average reduces throughput of our one-
sided operations by 10% for each side of the connection. In the
worst-case scenario, which is when both client and server are



(a) No workload. (b) NUMA-agnostic workload. (c) RDMA-local workload.

Fig. 6. Memcached throughput for different independent workload configurations.

RDMA-remote, we expect performance to be 20% worse than
the best-case (i.e., both RDMA-local). The fundamental reason
for this difference is twofold. First, RDMA-local interaction
automatically leverages direct cache access when handling
requests, which improves latency and throughput. Second, data
retrieval must pass over the interconnect between sockets,
incurring additional overhead. The combined influence of
these two factors leads to 20% worse performance when the
RDMA memory regions on both the client and server are
RDMA-remote.

Although a 10% per-side performance degradation might
not seem substantial, it is consistent across our microbench-
mark and real application. This performance penalty might
hide the performance advantages of new designs and imple-
mentations. It is an open question how to combat this behavior
since physical pages containing RDMA accessible memory
cannot be moved at runtime, and one-sided RDMA operations
are transparent to the remote machine.

When the server is loaded, RDMA operations are no longer
executing in an isolated setting. In our evaluation we test both
an independent workload and a workload that access remotely
accessible memory. When the workload is independent and the
application involves computation on the server, the NUMA lo-
cality of the workload has a significant negative effect (i.e., 2x
slowdown) on one-sided operations to the same NUMA zone
as the workload. This is because both RDMA operations and
server computation contend for resources with the workload.

If the workload is not read-only and operates directly on
memory that is accessible via RDMA, and the size of RDMA
operations are small, then RDMA-local operations perform
worse than RDMA-remote. This result was unexpected and
attributed to DDIO. RDMA operations see additional overhead
from load on the cache interconnects, such as cache-line
invalidation, when the memory they access also resides in
other core’s higher-level caches. Thus, if applications require
this type of workload it may benefit to use RDMA-remote
memory to avoid cache contention.

As a final observation, we are motivated by our comparison
with the newer RNIC. Future hardware improvements will
continue to yield lower latency and higher throughput. One
consequence of these advancements is that the impact of
NUMA will become more visible; it will constitute a larger
portion of the overall hardware path performance.

Future Directions. Leveraging our findings, we identify
a number of research opportunities to provide components
optimizing distributed systems using multiprocessors servers.
These ideas share the aim of making RDMA operations
more intelligent with regard to NUMA locality, allowing for
solutions that can avoid falling into the performance bugs
highlighted in this paper. The following is an overview of the
particularly interesting directions we envision, with additional
details in the subsequent paragraphs:

• RDMA-aware NUMA balancing to automatically move
remotely accessible memory to the optimal NUMA zone.

• Workload analysis to automatically pin memory regions
to NUMA zones.

• NUMA-aware synchronization mechanism for local and
remote operations.

NUMA balancing is a scheduling policy implemented by
many Operating Systems that attempts to move pages and
computation in order to minimize traffic over the NUMA
interconnection. NUMA balancing cannot be of help in the
case of RDMA one-sided interactions since these operations
are invisible to the operating system. Making the local operat-
ing system aware of such remote access pattern would allow
reducing some of the overhead discussed in this paper due to
RDMA-remote computation.

A more immediate solution to the issues discussed in this
paper is to adopt workload analyzer and use the outcome to
preemptively pin memory to NUMA zones depending upon
access patterns. We believe our findings will drive system
designers to make decisions that avoid the listed overheads.

An orthogonal problem is that operations cannot be atomic
across both RDMA and local accesses, unless supported by
the device. Current RNICs only support atomicity between
remote operations. To provide global atomicity, loopback or
advanced hardware technologies (i.e., Intel’s TSX) must be
leveraged [10]. A unified synchronization API that is NUMA
aware and does not force local operations to be routed through
the local RNIC, will provide programmers with a powerful tool
to build high performance distributed shared memory systems.

IX. CONCLUSION

In this paper we evaluated the performance of one-side
RDMA communication in the presence of NUMA servers.
We found that locality of the accessed memory affects



performance of remote operations, and in addition to that,
runtime optimizations are hard to provide since one-sided
interactions occur unnoticed by the receiving operating system.
Performance degradation spans from a “simple” 10-20%, in
the case the accessed memory is not RDMA-local and the
receiving server is under-loaded, to 300% better performance
for RDMA-remote operations in the case of a write-intensive
local workload on remotely accessible memory. Moreover, we
demonstrate that performance characteristics do not necessar-
ily adhere to the traditional wisdom that NUMA-local memory
access is better than NUMA-remote.
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