
Exploiting Parallelism of Distributed Nested Transactions

Duane Niles Roberto Palmieri Binoy Ravindran
Virginia Tech

{duane9;robertop;binoy}@vt.edu

Abstract
We present SPCN, a framework that further extends the
benefits of having distributed partially rollbackable (closed-
nested) transactions by exploiting their parallel activation.
SPCN provides support for executing each closed-nested
transaction in parallel with others belonging to the same par-
ent transaction. Their commit sequence is equivalent to the
serial commit execution, but parallelism is leveraged to im-
prove performance by reducing the amount of serial network
communication. As we show in our evaluation study using
20 nodes on Amazon EC2 and three well-known bench-
marks, SPCN provides performance improvement over the
original closed nesting, gaining more than 2⇥ in through-
put.

Categories and Subject Descriptors D.1.3 [Programming
Techniques]: Concurrent Programming; H.2.4 [Systems]:
Transaction Processing

Keywords Distributed Transactions, Nesting, Parallelism

1. Introduction
A transaction is an abstraction in which a set of operations
are grouped together as one individual atomic action, which
executes all-or-nothing. Transactions typically keep all of
the changes they have made hidden until they finish, or com-
mit. A transaction commits if no conflicts have been detected
between other transactions and itself. Upon detection of a
conflict, one of the transactions must abort and prevent any
of its changes from becoming visible. The aborting trans-
action can either restart from the beginning (rollback) and
re-execute in its entirety, or, in the case that some of the op-
erations executed are still valid, it can restart from an inter-
mediate point (partial rollback).

A lightweight and less intrusive technique that allows
for partial rollback is nesting, embedding transactions in-
side of one another. Nested transactions should be compo-
sitional, meaning that nested transactions do not perform
operations that would break the parent transaction’s opera-
tional correctness. Traditional parallel code (using explicit
synchronization) is not composable, for two functions may
conflict over the same synchronized data and then must be
re-implemented in order to be used together. Flat nesting
is the simplest form of nesting, where every inner transac-

tion (child transaction) is executed as part of the top-level
transaction (root transaction) and does not allow for inter-
mediate executions. Any conflict detected aborts the entire
transaction and all of the children, corresponding to the case
of rollback. Although this method of nesting is the easiest to
implement, other methods can improve transaction response
time and throughput, but the gains must exceed any over-
heads introduced by allowing for partial rollbacks.

Closed nesting [11] treats each parent transaction as a
container for its children. While sub-transactions are ex-
ecuting, they can abort independently from their parent,
thereby potentially reducing the scope of rollbacks. When
child transactions are finished and validated, they specula-
tively commit, merging their state into the state of their par-
ent. The effects of any children are not seen until the entire
root transaction (which has no parent) commits. If a conflict
is detected after a child commits, its parent will abort in its
entirety, clearing any actions of committed children. Further,
a parent transaction can commit only after all the enclosed
nested transactions have successfully committed.

Yet, even though closed nesting makes improvements
with partial rollback [7, 12], it only allows one sub-transaction
to be active at a given time, thus lowering internal concur-
rency. Parallel nesting [1, 2, 8], on the other hand, allows
child transactions to execute concurrently with one another,
ideally increasing the throughput of the whole transaction.
However, parallel nesting raises some issues, with the main
problem being that, in addition to already-present conflicts
with external transactions, the system now allows conflicts
internal to a transaction to occur between its children. Tak-
ing this further, because transactions can now have more
pieces working in parallel, there are even bigger chances for
conflicts between top-level transactions.

To give an example, let us consider the scenario where
the parent transaction, TP, has three closed-nested children:
TN1, TN2, TN3. Even though they are part of the same working
transaction, TN1, TN2, and TN3 can either interact on the same
resources (shared or private objects) or access all different
objects such that their executions can be considered fully
“independent.” Here, we assume that TN2 conflicts with TN1
over an object, thus it must perform the read after TN1 has
written. On the other hand, if TN3 is independent, it can finish
early without conflict. Running these sub-transactions in

1 2016/5/6



parallel allows the overlapping of their execution, shortening
the parent transaction’s critical path. Even with conflicts to
resolve, the execution is ideally better than, or in the worst
case equivalent to, the serial execution.

When applying the idea of parallel nesting to centralized
systems, the above notions do not hold as well. Every oper-
ation inside of a transaction and its children is on the criti-
cal path, thus any overhead added to a transaction process-
ing algorithm will delay the entire execution. On the other
hand, in distributed systems, the critical path is mainly the
network communication required for requesting data. Thus,
adding an overhead for internal processing of transactions
does not extensively add to the minimum time required to
run the transaction. If transaction’s children execute in par-
allel, then their network communication is overlapped and
their processing and validation is all internal to the node, as
they must validate against one another.

Parallelizing transactions within distributed systems is
not well-explored, but because distributed systems hold less
constraints than centralized systems, it is an intriguing path
to pursue. In this paper we present SPCN, a speculative ap-
proach for executing distributed closed-nested transactions
in parallel, capturing conflicts among them at run-time. The
problem of activating multiple parts of the same transaction
in parallel has already been studied in the past on central-
ized settings [1, 2, 8]. Unfortunately, for such systems it is
not clear how to automate what should be in parallel with-
out asking more of the programmer. Making even the slight-
est generalization about transactions in a centralized system
could result in a decrease in performance if conflicting oper-
ations are placed in parallel. Doing so would result in more
transactional aborts and, as all of the operations are on the
critical path, would slow down the system. For a centralized
system to make efficient usage of parallel nesting, the pro-
grammer would have to explicitly separate every piece of a
transaction into independent sections, which would require
extensive work in larger applications.

Instead, we rely on closed nesting for the benefit of par-
tial rollback and to enforce an order of visibility on sub-
transactions without requiring the programmer to make them
entirely independent. If a programmer has created trans-
actions using closed nesting, the general execution runs
through the nested transactions in the order in which they
are defined. To parallelize such nested transactions, enforc-
ing an order of operation is still necessary if the contents of
the transactions are unknown and not independent, as some
constraint must be placed in order to process conflicts be-
tween the children. However, adding synchronization opera-
tions to enforce an order in centralized systems would again
add to the critical path of the transactions, creating overheads
that outweigh the possible benefits. On distributed systems,
these operations, if properly organized, would not add an
extensive overhead as the internal processing of transactions
is not on the critical path, thus allowing more innovations.

SPCN provides two different protocols when it comes to
the completion of sub-transactions, which are all assigned
a transaction order, TO. The Strict protocol (Section 5.1)
enforces sub-transaction order directly by keeping future
children, those with a higher TO, from completing (although
they are still activated in parallel) until all of the children
prior to them have completed. In SPCN, when a parallel
child has completed, we say that a transaction has sub-
committed. As stated earlier, a nested transaction does not
make its actions visible to anything outside of its parent
transaction, thus a sub-commit means the same for parallel
nested transactions.

The Relaxed protocol (Section 5.2), on the other hand, al-
lows future children to sub-commit before all of their previ-
ous siblings have finished (assuming no conflicts have been
found up to that point). However, the protocol allows them
to be aborted afterwards if a prior sibling transaction de-
tects a conflict at a later time. This protocol, while allowing
a sub-transaction to be aborted after sub-committing, tries
to treat the concurrency optimistically. Note that the Strict
protocol still requires the conflicting sub-transaction to be
aborted, but the Relaxed protocol creates overhead by need-
ing to undo all of the aborted transaction’s updates as well as
managing additional data to synchronize child transactions
and detect internal conflicts.

We chose to build SPCN upon a Distributed TM (DTM)
system, Hyflow2 [15], which is implemented in Scala.
We evaluated SPCN using an experimental study with the
benchmarks Bank, TPC-C [6], and YCSB [5], measuring
the performance against closed nesting on up to 20 nodes
in Amazon EC2. Our results reveal that SPCN consistently
outperforms the sequential version of closed nesting by as
much as 2.85⇥ using Bank, 3.78⇥ with TPC-C, and 2.9⇥
when applied to YCSB.

The code is publicly available as an open source project
located at https://bitbucket.org/duaneVT/reflow.

2. Related Work
Nested transactions (using closed nesting) originated in
the database community and were thoroughly described by
Moss in [11]. One of the early works introducing nesting
to Transactional Memory was done by Moss and Hosking
in [12]. They describe the semantics of transactional opera-
tions in terms of system states, which are tuples that group
together a transaction ID, a memory location, a read/write
flag, and the value read or written.

Closed nesting has also been shown as effective in dis-
tributed deployments by [7]. In this work authors execute
sub-transactions sequentially without parallel activation,
thus the cost of the distribution is always on the transaction’s
critical path. On the contrary, SPCN still exploits the effec-
tiveness of closed nesting but also increases the system’s
concurrency by overlapping sub-transactions’ executions.

2 2016/5/6



Even though Transactional Memory (TM) promises to
make concurrent programming easier to the wider program-
ming community, nested transactions are generally not al-
lowed to run in parallel. This is an important obstacle to the
central goal of TM. Due to this issue, parallel nesting has
been studied in centralized settings [1, 2, 8].

Agrawal et. al. [1] propose XCilk, a runtime-system de-
sign supporting transactions that themselves can contain
nested parallelism and nested transactions. XCilk shows the
first theoretical performance bound on a TM system that sup-
ports transactions with nested parallelism. Baek et. al. [2]
present NesTM supporting closed-nested parallel transac-
tions. NesTM uses eager version management and word-
granularity conflict detections targeting the state and runtime
overheads of nested parallel transactions.

Barreto et. al [3] utilize thread-level speculation and TM
to execute operations out-of-order and detect inconsistencies
at runtime. It requires the programmer to break an applica-
tion down into coarse-grained transactions. The model as-
sumes no nesting. Transactions are separate parts of sequen-
tial code and broken down further by using techniques such
as compile-time code inspection. The system uses redo-logs
and requires any write to immediately lock an object, thus
preventing any other parallel transactions from accessing it.
A contention manager is used if separate applications at-
tempt to write the same object, and transactions will either
signal the other to abort if it is in the future or will wait until
the transaction completes if it is in the past.

Diegues et. al [8] build upon JVSTM [9] by allow-
ing transactions to directly write to Version Boxes (VBox)
which hold permanent versions of objects written by top-
level transactions. The VBox is extended to allow for tenta-
tive versions written by currently-active transactions. When
sub-transactions complete, all of the relative VBox entries
swap ownership to their parent, and once the top-level trans-
action commits, the latest tentative versions become per-
manent. The system expects the application to already be
broken into separate pieces that have no inherent ordering,
thus they can commit before other sub-transactions.

Differently from the above proposals, SPCN activates
transactions in parallel but it enforces the serialization or-
der as their order of creation, since it does not assume sub-
transaction independence. In addition, if a conflict arises,
partial rollback can be leveraged for restarting just the ex-
ecuting sub-transaction rather than the whole transaction.

3. System and Execution Model
System Model. We consider a distributed system which
consists of a set of nodes. The nodes communicate with each
other by message-passing across a communications network.
Nodes do not have globally-shared memory, nor do they
have a consistent global clock or instance of time.

Distributed systems may utilize replication, meaning that
application data will be placed on more than one node as

a means for ensuring fault tolerance. However, SPCN is an
orthogonal mechanism to replication. It can be deployed in
systems where replication is employed, as well as where
each node keeps just a partition of the shared resources. In
this paper we focus on such latter systems, allowing us to
better showcase the behavior of SPCN without additional
overheads due to replication.

Transaction Execution Model. A set of distributed
transactions DT = {T1,T2, · · ·} is assumed. Transactions
share a set of objects Ob j = {O1,O2, . . .}, which are as-
sumed to be distributed (i.e., partitioned) on the nodes of the
system. Transactions are modeled as a set of begin, read,
write, commit and abort operations on Ob j, and they de-
fine a total order in which these operations are executed.
Transactions that do not execute a write operation are called
read-only transactions; otherwise, they are called update (or
equivalently write) transactions.

The transaction processing complies with the control-
flow model [14], where objects are immobile and transac-
tional operations are invoked on the owners of the accessed
objects. In this model, the nodes responsible for maintaining
an object are fixed since the creation of the object and until
its deletion. When a transaction performs an operation on an
object stored on a remote node, the operation is invoked as a
remote procedure call on that node.

The object lookup mechanism relies on a directory dis-
tributed across all nodes. A directory performs lookup by
using a consistent hashing function on an object’s ID. The
hash result represents the node in the system that stores the
portion of the directory where the ownership of the requested
ID is defined. Control-flow-based protocols do not necessar-
ily need the deployment of a directory as just described. For
instance, the consistent hashing function can directly return
the owner of the object according to its ID. We decide to de-
ploy the directory service, however, because through it we
can decide the ownership of objects without letting the con-
sistent hashing function decide. By querying the owner, the
object is returned via a message to the requester, or a failure
message will be sent if another node has locked the object.

4. Handling Contention of Root Transactions
When a transaction T requests an object, it receives a mes-
sage from the owner containing either the object itself or a
signal if it is locked. In the latter case, another transaction is
updating the object and a conflict has been detected. In this
case, T will abort and rollback (or, according to the closed
nesting model, partially rollback if it is a child transaction).
If the request is successful, then T retrieves the object along
with the object’s version, or timestamp. Each object in the
system has a timestamp that is maintained by its owner. Each
time a transaction commits a write (or update) to the object,
the timestamp for that object is incremented. This version-
ing is used to detect conflicts during the validation phase of

3 2016/5/6



a transaction, thus ensuring that the history observed by the
transaction is consistent.

All transactions buffer their reads and writes into a pri-
vate, per-transaction, read-set and write-set during execu-
tion. These sets are hash tables organized by using object
IDs as the keys. Using a classical lazy approach, write op-
erations are performed locally without interacting with any
object owner (if the object has not been already read). The
writing transaction, T , stores a pair of (ob ject,value) into its
write-set. As said before, at the end of their execution, trans-
actions must perform a validation. The validation is done
after locking all the objects written, so that if the validation
succeeds, then the updates can be safely applied. To do so,
T groups the objects in their write-set by owner and sends
messages to the owners to lock the objects. Locking objects
on a node is only used during this commit-time as a means to
synchronize updates to the objects (i.e., mutual exclusion);
no lock is used during the execution of the transactions.

Similarly to when an object is requested, the owners re-
turn messages either stating a successful lock or a conflict
where an object is already locked. If a conflict is detected,
then the requesting transaction aborts and rolls back as be-
fore. The committing transaction also sends messages to
read all of the latest versions of the objects in its read-set.
If any of the objects are locked or have been updated since
the transaction read them, meaning that their current version
is larger than the version recorded by the transaction at the
time of its execution, then the transaction aborts as well.

After locking and validating, the transaction increments
the timestamp of all objects in its write-set, if it has any, then
sends commit messages to the owners of the objects. In the
control-flow model, all of the commit messages contain the
updated versions of the written objects and the owners will
replace the objects in their storage. Afterwards, the owners
unlock the objects, thereby allowing other transactions to
modify them. At this point, the transaction has committed.

Adding in the concept of nesting, transactions can also
have children, allowing for partial rollback. The execution
of transactions follows as before, but when sub-transactions
complete, they simply merge their read-set and write-set
with their parent transaction, the transaction directly above
them in the hierarchy. In terms of closed nesting, no ex-
tra step is necessary, thus no temporary validation is per-
formed nor are any objects queried for or locked by sub-
transactions. Only when all sub-transactions in the activa-
tion tree are completed will the top-level, or root, trans-
action begin the full commit, following the same process
of locking/validation as above. None of the actions of sub-
transactions are visible until the root transaction commits.

What we have described so far implements the well-
known Two-Phase Commit (2PC) [4] atomic commitment
algorithm, which ensures atomicity on the commit of a trans-
action. Although 2PC is well-known to be blocking upon co-
ordinator failure, the issue of how to ensure high availability

of the transaction coordinator state is well understood, and a
range of orthogonal solutions have been proposed in litera-
ture (e.g., Paxos Commit [10]).

The shown concurrency control is sufficient to guarantee
a serializable execution [4]. We can prove that by relying
on other solutions that use the same approach. SCORe [13]
adopts the same combination of validating read objects after
having locked written objects using 2PC. SCORe is more
complex because it also provides non-blocking read-only
transactions. Our proposal allows a smaller subset of the
transactional schedules that SCORe allows, thus we can rely
on it to claim our correctness criterion.

5. SPCN: Speculative Parallel Closed Nesting
In this section we detail our two versions of SPCN, one
named Strict and the other Relaxed. The main distinguishing
point between the two is the time at which sub-transactions
are allowed to commit. In the former, a sub-transaction can-
not commit until the previously-ordered one has already
committed. In the latter, we let the sub-transactions commit
in any order, but they can be subsequently aborted due to
(internal) conflicts with other sub-transactions.

5.1 SPCN: Strict Protocol
SPCN begins by initiating a specific number of top-level
transactions on a given node, each of which can spawn
child transactions and begin executing them fully in par-
allel. The child transactions are assigned an incremental
transaction order (TO) to enforce their serialization order.
Sub-transactions are not allowed to sub-commit until all the
previous siblings have sub-committed, in order to prevent
changes from possibly appearing out-of-order. During exe-
cution, sub-transactions can internally validate themselves
by checking for conflicts with previous siblings (i.e., sub-
transactions with lower TO values).

Each transaction (and child transaction) manages its own
read-set and write-set to track its own data and changes.
When a child sub-commits, as is normally done in closed
nesting, the child will merge its read-set and write-set into
the parent transaction. Until the merge, however, none of a
child transaction’s changes are visible to any of the other
siblings; otherwise, transaction isolation would be broken
and aborts could potentially cascade.

Once a child transaction sub-commits, all of the other
children can visibly read its data by observing the parent’s
data. Note that because of the order assigned to the sub-
transactions, children with lower TO cannot observe the data
of future siblings. For example, if transaction T2 writes to
any object, its previous sibling T1 cannot read any of those
changes ever. The Strict protocol accounts for this, as men-
tioned before, by simply stalling T2 from sub-committing
until T1 has sub-committed. For this reason we can consider
this version of SPCN as more pessimistic than its Relaxed
counterpart. However, optimism usually comes with addi-

4 2016/5/6



tional overhead, which is often higher than the achievable
gain. As we will see in the evaluation, this is mostly the case
with the Relaxed protocol, even though there are scenarios
where Relaxed outperforms Strict.

Due to the sub-commit order enforced by Strict, the only
conflict between siblings that needs to be accounted for is
Write-After-Read, where a transaction reads an object, then
a sibling with a lower TO writes the object at a later point,
invalidating the read. This conflict is detected very easily
by finding the intersection of the current transaction’s read-
set with the parent transaction’s write-set, which contains
the written objects of all previous siblings. Note that if two
sub-transactions write to the same object without reading it,
that is perfectly valid as the later transaction cannot publish
the write until all of its previous siblings have finished. In
most applications, however, it is likely that a transaction has
already read an object if it goes on to write to it later.

Because sub-transactions are only allowed to sub-commit
in their order of execution, each root transaction only needs
to keep a single version of each object present at any point
of time. When a sub-transaction writes to an object, say X ,
that version is overwritten if a future sibling sub-commits
another write to X . An example is shown in Figure 1 where
three sub-transactions write to the same object. In Relaxed,
there would be three separate versions stored. However, in
the Strict protocol, TN2 would not be able to publish its writes
until TN1 had done so, and TN4 would similarly wait upon
TN3, meaning TN2 had already completed. Thus, the object X
would be overwritten each time.

Algorithm 1 shows the initialization and commit of sub-
transactions in Strict. In the first function, the parent trans-
action uses the current transaction order TO and gets the Fu-
ture of the previous sub-transaction (line 4) or assigns null
if there was no previous sub-transaction (line 6). Futures are
an API in the Scala programming language as a means for
executing a task and monitoring its completion. The parent
transaction then creates the new sub-transaction by giving it
a reference to itself as well as its previous sibling, and stores
the new Future into the array by order (lines 9-10). Lastly,
the parent executes the sub-transaction using a dispatcher
exec and increments TO (lines 11-13).

The second function shows the sub-commit of child
transactions. At this point, the sub-transaction waits on the
immediately-prior sibling’s Future to complete (line 16).
Once the sibling is finished, then the current sub-transaction
validates itself. Recall that the only conflict is Write-After-
Read, thus the sub-transaction gets the intersection of its
read-set along with the parent’s write-set, which now con-
tains the writes of all previous siblings (line 20). If there is
an intersection, it checks to see if any of the read versions are
different from the latest versions, and if so, it marks a sibling
conflict as having occurred and aborts (lines 21-26). Upon
successful validation, the sub-transaction simply merges its
read-set and write-set with the parent (lines 29-30). Note

Algorithm 1: Strict Protocol
1 Procedure ChildBegin

Input: TO, txnFutures, exec
Output: None

2 . Get the future of the previous sibling
3 if TO > 0 then
4 prevSibling = txnFutures.get(TO�1);
5 else
6 prevSibling = null;
7 end if
8 . Create a new sub-transaction and run it
9 subTxn = createSubTxn(this, TO, prevSibling);

10 txnFutures.set(TO, subTxn);
11 subTxn.run(exec);
12 . Increment transaction order
13 TO++;

14 Procedure ChildCommit
Input: parent, prevSibling, siblingCon f lict, RS, WS
Output: None

15 . Wait upon the previous sibling to commit
16 waitUntil(prevSibling);
17 . Check if a previous abort was a sibling conflict
18 if siblingConflict == false then
19 . If not, validate the read-set
20 overlap = intersection(RS, parent.WS);
21 for all objects obj in overlap do
22 if RS(ob j) != parent.WS(ob j) then
23 siblingConflict = true;
24 abortTxn();
25 end if
26 end for
27 end if
28 . Upon success, merge with the parent
29 mergeRS(parent);
30 mergeWS(parent);

that the siblingCon f lict variable is a fast-path used to skip
this validation (line 18). If a sub-transaction aborts because
of a previous sibling, then it does not have to backoff or vali-
date again when it comes back to commit. The reason is that
the previous siblings are all done, so the sub-transaction can
immediately re-read the data that conflicted.

Now, there is a general problem that arises from Strict’s
simple wait-and-commit methodology. If two sibling trans-
actions are unrelated and do not have any potential conflicts,
then stalling the later transaction until the previous sibling
sub-commits is not fully effective; but as previously men-
tioned, independence of the nested transactions is not as-
sumed, as that would have required the programmer to ex-
plicitly separate code into completely disjoint sections.

This consideration motivated us to design the Relaxed
version of SPCN (Section 5.2). Supporting out-of-order
sub-commits requires maintaining multiple versions of the
same object, making reads visible, and monitoring a sub-
committed transaction until all of its previous siblings are
also sub-committed. These components are necessary to en-
sure the correctness of the transactions and they introduce

5 2016/5/6



some overhead, none of which exists in the Strict version;
thus, the system’s workload should satisfy certain conditions
so that the additional overhead’s impact is reduced.

5.2 SPCN: Relaxed Protocol
The Relaxed protocol is an extension of Strict that requires
more complex structures but also allows for more potential
parallelism. Sub-transactions with higher TOs are allowed
to sub-commit speculatively even if previous siblings are
still active, so long as none of the previous siblings nor the
sub-committing transaction found any conflicts up to that
point. We name this sub-commit speculative because the se-
rialization order is still not finalized until all previous sib-
lings sub-commit, although the sub-committing transaction,
TC, can publish its changes to the parent before this occurs.
Note that, because the sub-transactions still have an order
enforced by TO, earlier siblings could still be active and dis-
cover a conflict with TC. In terms of the conflict itself, the
only problem is still the Write-After-Read conflict: if TC read
from a variable X and sub-committed before a previous sib-
ling wrote to X .

In order to detect such conflicts with out-of-order sub-
commits, multiple versions of objects must be stored and
each transaction must store which version of each object it
has read. When it comes to keeping track of writes, each
object has its own structure, here named as “version tree”
(verTree), that sorts writes by the order (i.e., TO) associated
with the corresponding sub-transaction. The most sensible
tree would be an AVL Tree, used for efficient insertion,
deletion, and searches, all of which cost O(log n) on average
where n is the number of levels in the tree.

We also use a hash map (readHash) to keep track of
transactions reading objects, making the system use visible
reads, although the reads are only visible after the child
has sub-committed. Each object has a hash map where the
keys are the TOs representing a version of the object, and
the values in each bucket are more TOs representing which
transactions read the corresponding version of the object.
While adding this structure uses more space per object, it
results in faster conflict detection. The tree is better for
reading and writing versions based on the TO while the hash
is better for knowing which transaction has read a version,
as iteratively traversing the trees would take more time.

Child Commit. Algorithm 2 shows the commit for sub-
transactions and the parent thread processing the committing
transactions. Starting with the child transactions, they first
check if the root transaction is invalid and abort if so (lines
3-5). Normally, in a single-threaded transaction, a conflict
with already-committed data would cause the whole trans-
action to abort and restart. However, in this parallel imple-
mentation, the children are all different threads and thus the
root must set an invalid flag for the children to query. Then,
the child waits until the syncLock variable is available (line
7). The variable is used as a barrier if multiple transactions
are to reach this point at the same time.

Algorithm 2: Relaxed Protocol
1 Procedure ChildCommit

Input: RS, WS, TO
Output: None

2 . Check the root’s validity before committing
3 if root is invalid then
4 abortTxn();
5 end if
6 . Synchronize with siblings for committing
7 waitUntil(syncLock);
8 . Validate the read-set
9 for all objects obj in RS do

10 check = readPrevious(obj, TO);
11 if check.TO ! = obj.TO or check.data ! = obj.data then
12 . The object is out-of-date or has incorrect data
13 abortTxn();
14 end if
15 end for
16 . Publish the visible reads
17 for all objects obj in RS do
18 markAsRead(readHash, obj, TO);
19 end for
20 . Publish the write-set
21 for all objects obj in WS do
22 . Find out which siblings will be invalidated
23 invalidSiblings = getReaders(obj, previousVersion(TO));
24 for txn in invalidSiblings do
25 clearWrites(txn);
26 invalidSiblings += getReaders(txn.WS, txn.TO);
27 end for
28 . Update the object
29 writeTree(obj, TO);
30 end for
31 . Signal the parent and unlock
32 signal(childCommitted);
33 syncLock.next();

34 Procedure Commit
Input: invalidSiblings
Output: None

35 while numCommitted < numChildren do
36 . Wait for a commit and restart invalid children
37 waitUntil(childCommitted);
38 for txn in invalidSiblings do
39 numCommitted��;
40 restartTxn(txn);
41 end for
42 numCommitted++;
43 end while
44 . Update the read-set with distinct objects from the children
45 updateReadSet(readHash);
46 . Update the write-set with the latest object versions
47 updateWriteSet(verTree);

Once the transaction is able to commit, it must vali-
date its read-set. For each object in the set, it checks the
immediately-prior version available in the verTree for the
object (line 10). If the version of the object is not equiv-
alent to what the transaction has read, or if the version is
the same but the data has changed, then the transaction must

6 2016/5/6



abort as it is no longer correct (lines 11-14). If no conflicts
are detected, the transaction makes its reads visible to other
transactions in the readHash (lines 17-19), then moves on to
publish its write-set. Note that the validation of the read-set
and the publishing of the reads is separate. The reason is that
if transactions published reads as they validated, then they
would have to undo all of the publishes if a later conflict was
detected, thus that would add even more overhead.

 

TP 

TN1 
Committed 

TN2 
Committed 

TN3 
Committed 

W(X) = X1 W(X) = X2 R(X) = X2 
(Valid) 

W(X) = X4 

TN4 
Validating 

Figure 1. Example of SPCN.

The transaction must observe the readHash entries for
each object it is writing and look at siblings which read
the immediately-prior version of the object. If any of those
readers have a larger TO than the committing transaction,
the transaction removes the readHash entry for that invalid
sibling and adds it to a list of invalid transactions (line 23).
For instance, in Figure 1, transaction TN4 is committing
and writing object X which has two versions, X1 and X2
corresponding to TN1 and TN2. Transaction TN4 must only
check the readers of X2 and flag them as invalid if they have
TO greater than 4. If TN4 sees that TN3 has read X2, it is
perfectly valid as TN3 is meant to occur before TN4.

For each sibling marked as invalid, the transaction’s
writes are removed as they are no longer valid (line 25).
Further, other transactions are marked as invalid if they read
any of the objects from the invalid transaction’s write-set
(line 26), as their information is no longer valid as well. The
transaction then publishes the object (line 29). Once it has
completed all writes, the transaction signals that it has com-
mitted and then allows the next sibling if it is queued, or
simply frees syncLock for another sibling’s commit.

While the conflict detection may seem rather expensive,
we optimized the design of the solution so that, in gen-
eral, it does not slow down transaction response time signif-
icantly. In fact, as said above, transactions must only check
the immediately-prior version. The reason is that all other
possible conflicts would have been detected by other siblings
if they occurred.

In the example from Figure 1, TN2 would detect future
siblings that read X1. Say that some sibling TN5 also existed
and read X1. Then if TN5 had committed before it, TN2 would
detect the conflict and would mark TN5 as invalid. If TN2 had
already committed before TN5, then TN5 itself would see its
incorrect read, even if TN4 was not yet finished, as it would
notice that it read X1 instead of X2. Thus, TN4 itself does not
need to detect that conflict, and TN5 would expectedly read
X4 by the time it finished.

Transaction Commit. The second function of Algo-
rithm 2 is the commit of the transaction which simply han-
dles restarting its child transactions as necessary. While the
number of successfully committed children is less than the
number of child transactions, the transaction waits until a
child has signaled completion (lines 35-37).

Upon the commit of a child, the transaction simply runs
through all of the sub-transactions marked as invalid, de-
creasing numCommitted and restarting the children (lines
38-41). In our implementation, the transactions store a block
of code execution when they first begin, thus the restarting of
a transaction simply re-executes the block, similar to abort-
ing inside of the transaction while it is running. Once all of
the children are committed, the top-level read-set is updated
using the readHash across all of the children, and the write-
set is updated with the latest versions of written objects (lines
44-47). Afterwards, the normal commit of a top-level trans-
action is executed as described in Section 4.

6. Evaluation
We built SPCN into the Hyflow2 DTM framework [15],
which is a high-performance software infrastructure for im-
plementing distributed synchronization protocols, written in
Scala. As a testbed, we utilized Amazon EC2. The experi-
ments were run on up to 20 nodes of c3.8xlarge machines,
where each machine is equipped with Intel Xeon E5-2680
v2 (Ivy Bridge) processors, 32 vCPU, and 60 GB of mem-
ory. Each data point is an average of 5 runs.

We contrast the performance of SPCN against the classi-
cal implementation of closed nesting, where sub-transactions
are executed sequentially without overlap. In our deploy-
ment, each node runs a number of application threads.

Three benchmarks were utilized in experimentation:
Bank, a benchmark that mimics traditional bank opera-
tions; TPC-C [6], a popular benchmark that simulates ware-
house inventories and on-line processing of item orders; and
YCSB [5], a benchmark that performs read and update opera-
tions on tables of data. We explored different configurations
to show where SPCN is more effective.

6.1 Bank Benchmark
The Bank benchmark has two operations, balance check,
which observes the values of bank accounts, and transfer,
which withdraws money from one account and deposits it
into another. We managed to vary the number of opera-
tions in order to show the impact of the number of sub-
transactions per original transaction. The operations param-
eter (ops) defines how many nested sub-transactions there
are. For transfer, each sub-transaction opens two bank ac-
counts and transfers money between them. Thus, if ops is
4, then there are 4 sub-transactions, each operating upon 2
bank accounts, thus one root transaction uses 8 accounts.

In addition to ops and the number of application threads
running on each node, the other parameters are the read

7 2016/5/6



0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Nodes)

Closed"(20%)"

Strict"(20%)"

Relaxed"(20%)"

Closed"(50%)"

Strict"(50%)"

Relaxed"(50%)"

Closed"(80%)"

Strict"(80%)"

Relaxed"(80%)"

(a) Transfers per transactions = 8.

0"

5000"

10000"

15000"

20000"

25000"

2" 4" 6" 8" 10" 12" 14" 16"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Opera3ons)Per)Transac3on)

Closed"(20%)"

Strict"(20%)"

Relaxed"(20%)"

Closed"(50%)"

Strict"(50%)"

Relaxed"(50%)"

Closed"(80%)"

Strict"(80%)"

Relaxed"(80%)"

(b) Number of nodes = 20.

Figure 2. Performance of Bank benchmark varying % of read-only operations
using 500k accounts and 8 application threads per node.

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(High)"

Strict"(High)"

Relaxed"(High)"

Closed"(Med)"

Strict"(Med)"

Relaxed"(Med)"

Closed"(Low)"

Strict"(Low)"

Relaxed"(Low)"

Figure 3. Bank benchmark using differ-
ent contention levels with 8 operations.

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

2" 4" 6" 8" 10" 12"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(8"sub)"

Strict"(8"sub)"

Relaxed"(8"sub)"

C"(16"sub)"

Strict"(16"sub)"

Relaxed"(16"sub)"

(a) 50% conflict and 8/16 sub-tsx.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

2" 3" 4" 5" 6" 7" 8"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(20%)"

Strict"(20%)"

Relaxed"(20%)"

Closed"(40%)"

Strict"(40%)"

Relaxed"(40%)"

(b) 4 variable-size sub-txs varying contention.

Figure 4. Bank; 20 nodes; 50% read; 50k accounts, with internal conflicts.

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Nodes)

Closed"(0%"Local)"

Strict"(0%"Local)"

Closed"(25%"Local)"

Strict"(25%"Local)"

Figure 5. TPC-C; 8 threads per node.

percentage indicating how often balance check will occur as
opposed to transfer, as well as the number of bank accounts
created, which are spread randomly and evenly across the
number of nodes running. Changing those parameters means
changing the overall contention in the system (e.g., less
number of objects means more contention).

Figure 2 shows the results of SPCN using the Bank
benchmark. In both of the plots reported we configured
Bank by deploying 500k total accounts in the system and
each node runs 8 application threads. In these experiments
we vary the contention in the system by changing the %
of read-only transactions in the range of {20, 50, 80}. Fig-
ure 2(a) plots the total throughput of the system while in-
creasing the number of nodes deployed. Strict substantially
outperforms closed nesting by as much as 2.25⇥ due to
the exploitation of parallel activation of sub-transactions.
The improvement increases along with the percentage of the
read-only workload because clearly in this case conflicts are
reduced and parallelism is more effective. Relaxed SPCN
performs closely to Strict, though slightly worse, because all
of the sub-transactions are balanced to the same size, thus
the extra commit processing holds it down.

In Figure 2(b) we deploy 20 nodes and we increase the
transactional load by increasing the number of operations
made inside a single transaction. The performance clearly
decreases while increasing the size of the transaction, but it
is interesting to observe how SPCN constantly performs bet-
ter than sequential closed nesting by as much as 2.72⇥. The
speed-up of SPCN over closed nesting actually increases

as the number of operations increases, although the total
throughput decreases as the transactions become larger. With
more parallel operations, Relaxed’s processing does not hold
as much weight as it did in the previous experiment, thus its
performance is comparable to Strict.

In Figure 3 we vary the contention level by changing the
number of deployed accounts rather than the percentage of
read-only transactions, which is now fixed at 50%. We run on
20 nodes and also increase the number of application threads
per node up to 20. Each transaction has 8 sub-transaction op-
erations. From the plot it is clear that when the contention is
low, thus sub-transactions are likely independent (we recall
that accesses to accounts are random) and root transactions
do not suffer from several aborts, then the parallel activa-
tion pays off. As the number of threads increases, the con-
tention causes Relaxed SPCN to drop in performance, be-
cause the processing must be redone multiple times as there
are more aborts. The maximum improvement we observed
over closed nesting is 2.85⇥, 2.45⇥, and 2.2⇥ in the low,
medium, and high contention scenarios, respectively.

Lastly, we performed experiments that vary internal con-
flicts for parallel nesting. If two sub-transactions propagate
data between each other (i.e., one writes an item and the
other reads that new information), then parallel nesting en-
counters a conflict. The sub-transactions cannot go fully in
parallel as the newly-written data needs the writer to sub-
commit. For closed nesting, no overhead is added, as the sub-
transactions always go sequentially. In Figure 4, we include

8 2016/5/6



two experiments with internal conflicts running on 20 nodes,
both using 50% read operations and 50k bank accounts.

Figure 4(a) shows transactions running with a 50%
chance of sub-transactions conflicting. The number of sub-
transactions is changed from 8 to 16 per top-level transac-
tion thread. With 8 sub-transactions, Relaxed starts roughly
the same as Strict but performs worse as more transaction
threads are added, as Relaxed’s conflict processing adds
overhead. Closed nesting even manages to overtake both
of them in throughput. The reasoning here is that closed
nesting essentially performs 4 operations, as 50% conflicts
of shared data means that half of the sub-transactions only
require re-reading local data. In order to execute in paral-
lel, SPCN has multiple requests (likely at slightly different
times) that could be for the same data. At 16 sub-transactions
the parallelism pays off. Note that the throughput for each
is less than before simply because each transaction is now
longer. Here, Relaxed is the best. The parallel commits allow
the internal conflicts to be processed earlier than they could
be in Strict (due to the forced ordering of commits).

Figure 4(b) shows a different test with varied conflict
chances of {20, 40}%, with 4 sub-transactions that vary in
size randomly from 1 to 8 operations. Each sub-transaction
has a different computation time, which causes the in-order
commit protocol of Strict SPCN to form a bottleneck, as
shorter sub-transactions can potentially stall until earlier,
longer sub-transactions commit. Relaxed’s early processing
overcomes that barrier and is also able to process conflicts
earlier, allowing for better performance.

6.2 TPC-C Benchmark
TPC-C [6] is a larger benchmark simulating operations on
warehouses. The default breakdown of its five different oper-
ations places the creation of new orders and the payment of
previous orders as the most frequent. With this profile, 92%
of the transactions executed are write transactions. We eval-
uated encapsulating any loop iterations as sub-transactions.
As for parameters, we change the access locality skew,
which is the percentage of transactions accessing the ware-
house located on the same node where the transaction is ex-
ecuting. Decreasing this parameter increases the contention
in the system because more network communication is re-
quired to execute and commit transactions. The benchmark
is configured deploying one warehouse per node, thus con-
tention in the system is high, as is usual for TPC-C. In the
following plots (except for Figure 6(b)) we do not report the
performance of Relaxed because it is very similar to Strict
and we want to avoid overlapping lines.

Figure 5 displays results increasing the number of nodes
(thus the number of warehouses and threads as well) and
changing the transaction access skew from 0% (completely
random accesses) to 25% (a slight bias to local accesses). As
is shown, Strict is able to scale better than closed nesting, as
it increases linearly while closed nesting decreases after 16
nodes. The reasoning here is the length of the TPC-C trans-

0"

200"

400"

600"

800"

1000"

1200"

1400"

1600"

1800"

2000"

2" 4" 6" 8" 10" 12" 14" 16"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(0%"Local)"

Strict"(0%"Local)"

Closed"(25%"Local)"

Strict"(25%"Local)"

(a) Default settings using 20 nodes.

0"

500"

1000"

1500"

2000"

2500"

2" 3" 4" 5" 6" 7" 8"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(4"sub)"

Strict"(4"sub)"

Relaxed"(4"sub)"

Closed"(8"sub)"

Strict"(8"sub)"

Relaxed"(8"sub)"

(b) Read-only transactions on 10 nodes.

Figure 6. Performance of TPC-C benchmark.

actions and the high conflict rate. Because many transac-
tions abort very often, and because closed nesting takes sig-
nificantly longer to perform sets of transactions than Strict
does, it is much slower in re-executing aborted transactions.
Even though Strict faces high abort levels (even higher than
closed nesting), its parallelized transactions can re-execute
more quickly. In terms of locality, the scaling trends remain
the same for both closed nesting and Strict, although 25%
locality results in higher throughput for both of them. The
largest performance increase over closed nesting in this chart
is 2.9⇥ and 2.68⇥ for 0% and 25% local skew, respectively.

The results plotted in Figure 6(a) show the behavior of
the two competitors while varying the application threads
per node and the access skew, and we fix the system at 20
nodes. As is shown, at 0% local skew, Strict levels out due to
the very high contention and high network communication
from the majority of transactions often being external. Yet,
Strict is able to sustain as the number of clients increases up
to 320 total, while closed nesting decreases in performance,
unable to handle the conflicts. Closed nesting decreases as
well for 25% local skew, while Strict increases and performs
better than itself at 0% local skew, leveling out at 12 threads
per node. The reasoning here is that, with the local bias,
transactions are less often external, thus Strict can re-execute
aborted transactions even faster if they are local. The speed-
up over closed nesting increases with the number of threads
due to increasing contention and closed nesting decreasing
in performance, with the maximum being 3.07⇥ and 3.78⇥
for 0% and 25% local skew, respectively.

Figure 6(b) demonstrates TPC-C configured with all
read-only transactions. Here, there is no possibility of con-

9 2016/5/6



0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

16000"

18000"

20000"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(20%"Read)"

Strict"(20%"Read)"

Relaxed"(20%"Read)"

Closed"(50%"Read)"

Strict"(50%"Read)"

Relaxed"(50%"Read)"

Closed"(80%"Read)"

Strict"(80%"Read)"

Relaxed"(80%"Read)"

(a) Low Contention (100 rows, 10 accesses).

0"

1000"

2000"

3000"

4000"

5000"

6000"

7000"

8000"

9000"

10000"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Threads)Per)Node)

Closed"(20%"Read)"

Strict"(20%"Read)"

Relaxed"(20%"Read)"

Closed"(50%"Read)"

Strict"(50%"Read)"

Relaxed"(50%"Read)"

Closed"(80%"Read)"

Strict"(80%"Read)"

Relaxed"(80%"Read)"

(b) High Contention (50 rows, 20 accesses).

0"

2000"

4000"

6000"

8000"

10000"

12000"

14000"

2" 4" 6" 8" 10" 12" 14" 16" 18" 20"

Th
ro
ug
hp

ut
)(t
xn
/s
))

Nodes)

Closed"(Low)"

Strict"(Low)"

Relaxed"(Low)"

Closed"(High)"

Strict"(High)"

Relaxed"(High)"

(c) 12 threads/node and 20% read-only.

Figure 7. Performance of YCSB varying contention and read-only %.

flict because no write is invoked. In the plot we report the
performance of having 4 and 8 sub-transactions per origi-
nal transaction. Clearly, Strict and Relaxed SPCN are nearly
the same without potential write conflicts. Relaxed slightly
worsens with more root threads per node because of its
processing, thus slowing commits down as there are more
threads than the cores can typically handle. The best speedup
is 2.35⇥ and 3.28⇥ for 4 and 8 sub-txns, respectively.

6.3 YCSB Benchmark
The YCSB [5] benchmark originated as a means of testing
database information with SQL-style operations. For testing
SPCN, the benchmark simply represents tables of informa-
tion with different ways to manage the setup and contention
possibilities. The main parameters used for the benchmark
are the number of rows within a table, the number of cells
within a row (or number of columns), the number of cells
that a transaction accesses or operates upon, as well as the
locality skew and the percentage of read-only transactions.
Note that in all of the below experiments, we kept the lo-
cality skew at 0%, thus random and more often external re-
quests are made.

One table is allocated per node, and there are two main
operations, read or update. Transactions begin by choosing
a table from a node, then by choosing a row in the table.
The number of rows strongly influences contention, as does
the number of accesses performed by a single transaction.
For low contention across 20 nodes, we gave each table 100
rows and 100 cells per row, with transactions accessing 10
cells at a time. For high contention, we cut the number of
rows in half to 50, kept the cells at 100, and doubled the
number of cells accessed to 20 per transaction.

In Figure 7, we hold the number of nodes in the system
at 20 and vary the number of threads executing per node,
the read % of transactions, and the contention level. At both
contention levels, closed nesting and Strict follow similar
trends, although the average throughput at high contention
is roughly half the throughput at low contention. Further,
Strict remains better than closed nesting at the vast majority
of settings. In both charts, the bottom Strict line is at 20%
read transactions and intersects with the top closed nesting
line at a high number of threads. But that closed nesting
line is at 80% read transactions, meaning that closed nesting

only reaches similar performance to Strict when Strict has
4⇥ the number of write transactions, therefore much more
conflict. The best speed-up for Strict here is 2.46⇥ for low-
and 2.9⇥ for high-contention. Relaxed cannot deal with the
growing contention across 20 nodes, although it begins by
outperforming Strict as seen in Figure 7(b) using 2/4 threads.

In Figure 7(c), we fix the number of threads at 12 per node
and 20% read-only transactions (thus, more conflict), while
we vary the contention level and the number of nodes. In this
experiment, all competitors scale linearly with the number
of nodes. Across the two contention levels, the maximum
performance gain for SPCN is 1.69⇥.

7. Conclusion
In this paper we presented SPCN, an efficient technique for
activating distributed (closed) nested transactions in parallel,
thus overlapping their execution (including network interac-
tions). As the evaluation shows, enforcing the same serial-
ization order as in the original transaction is possible and
very effective when transactions are distributed.

Acknowledgments
This work is supported in part by US National Science Foun-
dation under grant CNS-1523558, and by US Air Force Of-
fice of Scientific Research under grant FA9550-15-1-0098.

References
[1] K. Agrawal, J. T. Fineman, and J. Sukha. Nested parallelism

in transactional memory. In PPoPP, pages 163–174, 2008.
[2] W. Baek, N. Bronson, C. Kozyrakis, and K. Olukotun. Im-

plementing and evaluating nested parallel transactions in soft-
ware transactional memory. In SPAA, pages 253–262, 2010.

[3] J. a. Barreto, A. Dragojevic, P. Ferreira, R. Filipe, and R. Guer-
raoui. Unifying thread-level speculation and transactional
memory. In Middleware, pages 187–207, 2012.

[4] P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concur-
rency Control and Recovery in Database Systems. Addison-
Wesley, 1987. ISBN 0-201-10715-5.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and
R. Sears. Benchmarking cloud serving systems with YCSB.
In SoCC, pages 143–154, 2010.

[6] T. Council. TPC-C Benchmark. 2010.

10 2016/5/6



[7] A. Dhoke, B. Ravindran, and B. Zhang. On closed nesting
and checkpointing in fault-tolerant distributed transactional
memory. In IPDPS, pages 41–52, 2013.

[8] N. Diegues and J. Cachopo. Practical parallel nesting for
software transactional memory. In DISC, pages 149–163,
2013.

[9] S. M. Fernandes and J. a. Cachopo. Lock-free and scal-
able multi-version software transactional memory. In PPoPP,
pages 179–188, 2011.

[10] J. Gray and L. Lamport. Consensus on Transaction Com-
mit. ACM Transactions on Database Systems, 31(1):133–160,
2006.

[11] E. B. Moss. Nested transactions: An approach to reliable
distributed computing. Technical report, Cambridge, MA,
USA, 1981.

[12] J. E. B. Moss and A. L. Hosking. Nested transactional mem-
ory: model and architecture sketches. Sci. Comput. Program.,
63:186–201, 2006.

[13] S. Peluso, P. Romano, and F. Quaglia. Score: A scalable one-
copy serializable partial replication protocol. In Middleware,
pages 456–475, 2012.

[14] S. Peluso, P. Ruivo, P. Romano, F. Quaglia, and L. Rodrigues.
When scalability meets consistency: Genuine multiversion
update-serializable partial data replication. In ICDCS, pages
455–465, 2012.

[15] A. Turcu, B. Ravindran, and R. Palmieri. Hyflow2: A high
performance distributed transactional memory framework in
scala. In PPPJ, pages 79–88, 2013.

11 2016/5/6


