
Don’t Forget About Synchronization!
A Case Study of K-Means on GPU

Jacob Nelson
Computer Science and Engineering

Lehigh University, USA
jjn217@lehigh.edu

Roberto Palmieri
Computer Science and Engineering

Lehigh University, USA
palmieri@lehigh.edu

Abstract
Heterogeneous devices are becoming necessary components of
high performance computing infrastructures, and the graphics pro-
cessing unit (GPU) plays an important role in this landscape. Given
a problem, the established approach for exploiting the GPU is to
design solutions that are parallel, without data or flow dependen-
cies. These solutions are then offloaded to the GPU’s massively
parallel capability. This design principle (i.e., avoiding contention)
often leads to developing applications that cannot maximize GPU
hardware utilization. The goal of this paper is to challenge this
common belief by empirically showing that allowing even simple
forms of synchronization enables programmers to design parallel
solutions that admit conflicts and achieve better utilization of hard-
ware parallelism. Our experience shows that lock-based solutions
to the k-means clustering problem outperform the well-engineered
and parallel KMCUDA on both synthetic and real datasets; aver-
aging 8.4x faster runtimes at high contention and 8.1x faster for
low contention, with maximums of 25.4x and 74x, respectively. We
summarize our findings by identifying two guidelines to help make
concurrency effective when programming GPU applications.

CCS Concepts • Software and its engineering → General
programming languages; • Social and professional topics→
History of programming languages;

Keywords GPU, Synchronization, K-means, Concurrency

ACM Reference Format:
Jacob Nelson and Roberto Palmieri. 2019. Don’t Forget About Synchroniza-
tion! A Case Study of K-Means on GPU. In The 10th International Work-
shop on Programming Models and Applications for Multicores and Manycores
(PMAM’19), February 17, 2019, Washington, DC, USA. ACM, New York, NY,
USA, 10 pages. https://doi.org/10.1145/3303084.3309488

1 Introduction
Nowadays, general purpose multicore machines serve a vast class
of different workloads, spanning from those produced by an in-
dividual user, to the ones targeted by market-leading companies.
Although large in terms of parallelism, general purpose multicore
processors cannot compete with the parallelism made available by
dedicated heterogeneous devices. Consequently, exploiting these

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or
a fee. Request permissions from permissions@acm.org.
PMAM’19 , February 17, 2019, Washington, DC, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6290-0/19/02. . . $15.00
https://doi.org/10.1145/3303084.3309488

devices to increase performance (when possible) continues to in-
crease in popularity.

By taking advantage of specialized hardware, tasks can run faster
and more efficiently than by only using general purpose processors.
For example, the graphics processing unit (GPU) has become an
important tool for a variety of problems, including machine learn-
ing, simulations, and other computationally expensive applications
whose execution can be parallelized. Its popularity is attributed to
its generous number of cores (e.g., 2560 for the NVIDIA GTX-1080
and 5120 for the NVIDIA Titan V).

Unfortunately, heterogeneity often comes at the cost of decreased
programmability. Many efforts have already been made to simplify
the programmer’s life by transparently bridging different instruc-
tion set architectures (e.g., [5, 7, 8, 34]). Normally, optimizations
enabled by the device’s native programming language are the first
candidates not to be ported. Another important consequence of het-
erogeneity is the need to re-engineer algorithms to meet hardware
requirements and ultimately achieve the desired speedup over the
original (CPU-based1) code. We focus on this particular aspect of
GPU-based computing, tackling a common belief that significant
speedup cannot be reached without re-engineering.

Generally, certain portions of any algorithm that are inherently
parallel represent good candidates to be offloaded to the GPU, if
its contribution to runtime is noticeable compared to the overall
application runtime [6, 22]. For sections of a program where syn-
chronization might be needed, some solutions prefer to use GPU
atomics (e.g., [1]), where others choose to pass execution to the
CPU, where synchronization is simpler to address [25]. Recent re-
search on GPU synchronization provides more advanced solutions.
Some examples of this are, transactional memory [9, 11, 12, 19, 36],
locking algorithms [35], scheduling algorithms [18] and even ar-
chitectural changes [17].

We propose that even with elementary constructs, synchroniza-
tion should be considered viable when writing GPU code. We sup-
port our claims by describing a case study on the widely used
k-means clustering algorithm (originally designed to help digitally
represent analog signals [28] and used extensively for a wide vari-
ety of clustering tasks [13–15, 23, 26, 33]). In the evaluation of our
lock-based implementations for the GPU, we discover that handling
concurrency with fine-grain spinlocks can lead to more than 20x
average speedup against a carefully crafted and well-engineered
parallel version (i.e., KMCUDA [3]). Take note that our motivation
is to champion the use of fine-grain synchronization in GPUs, not
to design a high-performance variant of the k-means algorithm.

Our investigation is also orthogonal to work done to improve
synchronization on the GPU. For example, transactional memory
has been proposed (both in software and hardware) [9, 11, 12, 19, 36]

1When we reference CPU programming, we are referring specifically to non-
heterogeneous x86-compliant code.

1

https://doi.org/10.1145/3303084.3309488
https://doi.org/10.1145/3303084.3309488

PMAM’19 , February 17, 2019, Washington, DC, USA Jacob Nelson and Roberto Palmieri

Algorithm Centroid Memory Location Lock Granularity
GM-CL Global Per-cluster
GM-DL Global Per-dimension
SM-CL Shared Per-cluster
SM-DL Shared Per-dimension
Table 1. Overview of the four lock-based algorithms.

to coordinate accesses to common data, as well as advanced lock-
based synchronization [24, 35] techniques. In this paper we do not
aim at presenting new strategies for implementing synchronization
on GPUs; rather, we address the situation of taking an existing
problem and designing a solution that leverages synchronization
before re-engineering the algorithm to be completely parallel. How-
ever, improving concurrency controls will facilitate the adoption of
concurrent GPU programming.

2 Overview
Despite the considerable amount of work produced on synchro-
nization on the GPU, it is a commonly held belief that fine-grain
synchronization on the GPU should be avoided whenever possi-
ble [2]. In essence, when programming for the GPU it is considered
better to redesign an existing algorithm to be completely parallel
(i.e., no data dependency among parallel executing tasks) rather
than attempting to gain speedup with code that may cause data
races. The decision between re-engineering an application to take
advantage of the GPU parallelism and adopting an existing solu-
tion for CPU is often driven by the effort needed to carry out the
re-engineering, which might not be predictable if the problem to
be solved is custom.

Fine-grain synchronization also enables certain algorithms, which
may better exploit the massively parallel hardware offered by the
GPU. Ignoring fine-grain synchronization automatically eliminates
approaches that might outperform carefully parallelized solutions.
In this paper we do not argue that shared-nothing parallelism ought
to be avoided, but that other options should also be consideredwhen
designing high performance GPU programs. Our goal is not to an-
swer when synchronization should be preferred over a parallel
design, but it empirically demonstrates that synchronization can
provide higher performance, as is seen in our case study. General-
izations of its usefulness will be a future direction.

Many approaches to synchronization on the GPU target ar-
chitectural changes [9, 17, 19] to facilitate implementing mutual
exclusion and manufacturers are responding accordingly. For in-
stance, NVIDIA’s Volta architecture now supports independent
thread scheduling by maintaining a program counter and stack for
each thread [31]. This enhances capabilities for fine grain synchro-
nization by eliminating difficulties arising from single-instruction,
multiple threads (SIMT) execution.

2.1 Methodology
In order to achieve our goal of assessing performance of traditional
forms of synchronization (e.g., locks) in the context of GPUs, we
design four lock-based implementations of the k-means update
phase with carefully chosen characteristics to understand how the
GPU architecture affects performance. We focus on two aspects:
lock granularity and shared memory.

To clarify the design decisions made in each of the four algo-
rithms, we briefly summarize how k-means organizes data and
processes it (more details in Section 4). K-means is a clustering

algorithm; where a centroid (or cluster center) is the average of all
members of a cluster and maintains the same number of dimensions
as a data point. Because conflicts are possible when calculating cen-
troids, each cluster must be protected by a lock, which is stored as
metadata. Section 5 goes into more detail, but the following is an
overview of the four algorithms we propose (an overview of the
configurations is given by Table 1):

• Global-Memory Centroid-Lock (GM-CL) stores all centroids
and metadata in global memory (accessible by all threads)
and each cluster center is protected by a single lock.

• Global-Memory Dimension-Lock (GM-DL) makes lock granu-
larity finer by protecting each dimension of a cluster center
with a lock. Like GM-CL, all centroids and metadata are
stored in global memory.

• Shared-Memory Centroid-Lock (SM-CL) protects each cen-
troid with a single lock, but stores centroids and their meta-
data in shared memory (i.e., a faster on-chip memory that
restricts access to a subset of threads).

• Shared-MemoryDimension-Lock (SM-DL) utilizes sharedmem-
ory but maintains locks for every dimension of a cluster.

We compare our algorithms against the competitor, KMCUDA,
by running our experiments on a NVIDIA GTX-1080 GPU. The
parameters for each experiment are the number of data points to
be clustered, n, the dimensionality of data points and clusters, d,
and the number of clusters to find, k. For the following results,
we set d = 32 and k varies. Two datasets are used. The first is
synthetic data drawn from a uniform distribution. Admittedly not
naturally clustered, this avoids biases introduced by pre-clustered
data and represents the worst case scenario. Additionally, we test
the Corel Image Feature Dataset to verify that our findings apply
to real-world data.

For the synthetic dataset, GM-CL achieves an average speedup of
1.9x across all k forn = 5000 and 4.4x forn = 50000while observing
maximum speedups of 4.2x and 13.5x respectively. GM-DL reaches
average speedups of 6.1x for n = 5000 and 21x for n = 50000 with
maximums of 14x and 75x. We observe average speedups of 5.2x
for n = 5000 and 7.2x for n = 50000 when running SM-CL. This
implementation attains a maximum speedup of 12x for n = 5000
and 25x for n = 50000. SM-DL only observes a maximum speedup
of 2.2x for n = 5000 and 2.6x for n = 50000, with both average
speedups across all values of k falling below 1x.

For the real-world dataset, GM-CL achieves an average 3x im-
provement over the competitor and maximum of 12.9x when k =
4096. GM-DL averages 9.4x with a max of 37.4x, again at k = 4096.
SM-CL averages 9.6x with a maximum of 22.9x at k = 256. SM-DL
only averages 2.3x, but its max of 4.9x occurs at k = 2.

As a general result, increasing granularity decreases the work
necessary for each thread, but it can also saturate the GPUs many
cores. Using shared memory is faster, but can lead to unnecessary
overheadwhen the cost of managing data overpowers the decreased
latency of using shared memory.

2.2 Contributions
• We implement four lock-based solutions that solve k-means
using the GPU.

2

Don’t Forget About Synchronization! A Case Study of K-Means on GPU PMAM’19 , February 17, 2019, Washington, DC, USA

• Contrary to common belief, we demonstrate that GPU lock-
based programming is a viable (and in our experience su-
perior) alternative to re-engineering an algorithm to avoid
data races.

• We provide two general guidelines for designing lock-based
algorithms on the GPU based on the experimental findings.

The rest of the paper is organized as follows: First, Section 3
describes fundamental concepts of GPU computing as they pertain
to our work. Next, Section 4 describes the k-means algorithm and
previous efforts to write GPU implementations. Section 5 outlines
our lock-based k-means algorithms. Section 6 evaluates our experi-
mental results and Section 7 gives general guidelines for lock-based
GPU implementations. Finally, Section 8 concludes the paper.

3 GPU Background
GPUs are designed to compute massively parallel workloads effi-
ciently. Execution is based on single instruction multiple threads, or
SIMT, processing. In both execution and memory, GPU hardware or-
ganization enforces properties that directly influence performance.
For this reason, the rest of this section overviews these concepts.

ProgrammingModel. GPUs allow thousands of threads to pro-
cess in parallel. A kernel determines the behavior of many threads
cooperating to do work. The host (i.e., the CPU) launches a kernel
on the device (i.e., the GPU), which then executes the kernel. The
total number of threads executing a kernel is predetermined by the
program before it is launched. Once executing, access to thread ID
metadata allows decisions to be made on a per-thread basis, for
example indexing into an array of cluster centers.

Execution Model. A kernel is composed of a grid of thread
blocks, or groups of threads that share hardware. In current archi-
tectures, each thread block is assigned to a streaming multiprocessor
(SM) and continues executing on the same SM for its lifetime. A
single SM has many processing units (e.g., 128 cores for the NVIDIA
GTX-1080). One or more thread blocks can be scheduled to the same
SM, but this number is restricted by maximum number of resident
threads allowed by the hardware.

During execution, a subset of sequentially numbered threads
from a block, known as warp, is scheduled and run by the SM. Due
to SIMT processing, threads in a warp execute in lockstep [27],
meaning that all threads execute the same instruction. In the case
that two threads in a warp diverge due to a branch, an active threads
mask determines which threads make progress. The SM disables
non-active threads until the current branch is completed, after
which it executes all divergent branches in the same manner de-
scribed. After all divergent branches complete, the warp converges,
which entails it can continue executing as a whole.

Memory Organization. For our purposes we restrict the dis-
cussion of memory on GPUs to global and shared memory. Other
memories exist (e.g., texture memory and surface memory) but our
work does not address them. They are specialized memories mostly
used for graphics processing.

• Global memory is functionally equivalent to main memory
of CPU. An L2 cache is accessible to all SMs and is serviced
differently depending on if the data is also cached in the L1
cache. Typically, the L1 cache is reserved for read-only data,
however compiler directives provide functionality to force
caching all data in L1.

• Shared memory is on chip memory that is local to each SM,
and therefore only shared by threads in a thread block. The
amount of shared memory allocated per thread block is fixed
prior to kernel launch.

A common pattern is to copy data into shared memory, process
it using the faster memory, then copy it back to global memory [21];
providing an essential optimization for many GPU applications.

SIMT Mutual Exclusion. Dealing with data races on GPUs is
challenging due to the lockstep execution of threads, memory or-
ganization, and poor programmability. While modern GPUs offer
atomic operations (e.g., atomicAdd(), atomicSub(), atomicCAS()),
they lackmore expressive APIs (e.g., pthread_mutex_locks), which
constitute the fundamental building blocks in designing and devel-
oping correct concurrent programs on CPU.

The major pitfall in implementing concurrency abstractions,
such as lock, is that threads diverge when a lock is already taken
leading to sequential execution of divergent branches. In addition,
some instrumentation is required to guarantee the progress of a
warp, namely making sure all the divergent paths will eventually
make progress.

A (frequent) deadlock condition occurs when threads in a warp
diverge. Specifically, when a divergent thread holds the lock needed
by a non-divergent thread. When a thread spins until a lock is
acquired (e.g., by using "while(CAS!=1)"; in C++), it causes threads
that successfully acquired locks to become divergent while the
non-divergent threads execute the empty body of the while loop.
When this happens, threads that successfully acquired a lock are
masked off and will not execute the critical section until the non-
divergent threads exit the while loop. When a lock needed by a
non-divergent (i.e., spinning) thread is held by a divergent thread,
then the non-divergent thread will spin forever and branches can
never reconverge. Deadlock occurs because a divergent thread
cannot make progress until a non-divergent thread finishes, which
will spin on the while loop indefinitely because it requires a lock a
divergent thread holds.

A common solution [4] maintains a flag denoting if a thread
has completed its critical section and replacing the while condition
with this flag. A thread will then try to acquire the lock inside the
while loop. If it fails, the thread will simply pass over the critical
path and wait for divergent branches (i.e., threads that were able
to get the lock) before entering the while loop again. This allows
successful threads to finish the critical section and release their
locks. All threads in a warp will then check the while condition
again, repeating the above process.

Additionally, due to the absence of powerful APIs to handle
concurrency, it is the programmers responsibility to handle anom-
alies due to weak memory consistency models. Alglave et al. in [4]
use carefully constructed programs to force weak memory behav-
iors on the GPU. They show that, to correct this behavior, fences
and volatile memory are needed to ensure valid memory access.
This does not differ from implementing a lock for the CPU. In fact,
we leverage our knowledge of concurrent CPU programming to
implement our lock-based k-means algorithms for the GPU.

4 K-means Background
K-means is a clustering algorithm for unsupervised learning and is
commonly used [13–15, 23, 26, 33]. Given a data set (of n number
of points each with d dimensions), k clusters are found that best

3

PMAM’19 , February 17, 2019, Washington, DC, USA Jacob Nelson and Roberto Palmieri

represent the underlying groups of data. Portions of k-means are
easily parallelized, while others can cause conflicts if not carefully
designed. This section overviews solutions for solving k-means
suited for both CPU and GPU.We selected implementations that are
simple, as well as implementations tailored for better performance.

4.1 K-means Algorithms: Lloyd & Yin-Yang
The classic k-means algorithm, Lloyd’s algorithm [28], is straightfor-
ward to understand. It consists of two phases. First, after initializing
k centroids (by assigning them to random points in the data set,
for example), the assignment phase assigns each data point to the
closest cluster based on some distance metric between the point
and the cluster’s center. Then, the update phase uses the data points
assigned to a cluster to set the cluster centroid to the average of
all its members. It repeats the assignment and update phases until
all clusters’ members do not change or some number of iterations
exceeds a fixed threshold.

Another solution to k-means, Yin-Yang (YY) [16], is considered
a drop in replacement for Lloyd’s k-means and has been shown to
improve performance on CPU by up to 10x, compared to Lloyd’s
algorithm (see comparison in [16]).

YY optimizes the assignment phase by using global and group
filters to reduce the number of necessary comparisons, resulting in
a large speedup. In addition to reducing the amount of work done
during this phase, YY approaches the update phase differently, as
well. Instead of computing the average of all members, it makes
slight alterations to a centroid based on changes in the assignment
of a data point. Updates are only made using data points whose
assignments change to or from the cluster. This allows for easy
parallelization of the computation because each thread can scan
the entire data set for points whose membership changes relative
to themselves and do the update accordingly, without interfering
with other clusters. Another benefit is that when the number of
reassignments in an iteration are low, few calculations are needed.

4.2 Implementations of K-means for GPU
As previously stated, k-means consists of two computationally
intensive phases: the assignment and update phases. There is also
an initialization phase, which precedes the assignment and update
phase but only happens once during the entire computation.

In both Lloyd and YY, the assignment phase is inherently parallel
because writes do not generate conflicts. However, the update phase
is where potential data races are possible. For both algorithms, this
can be avoided by parallelizing over the centroids, but this can lead
to under-utilization when compared to parallelizing over the data
points because in k-means the number of data points generally
surpasses the number of clusters to find.

In the following paragraphs we discuss solutions to implement
k-means for GPUs. Each approaches the update phase differently
to handle (or eliminate) conflicts.

CUDA k-means. This algorithm is provided as a library by
NVIDIA [10]. Instead of using a lock-based approach, it formulates
k-means to rely entirely on atomic additions, since write conflicts
occur when data points are members of the same centroid.

KMCUDA. KMCUDA uses the Yin-Yang k-means algorithm.
Because the assignment phase does not introduce possible data
races, we will not include a description of how KMCUDA achieves
the assignment phase on the GPU. For more information on the

implementation details, both their code [3] and an accompanying
write-up [29] are available.

To avoid synchronization in the update phase, KMCUDA assigns
each thread to update a single cluster. As discussed, each thread
updates its designated cluster based on how assignments change.
It relies on shared memory by storing the assignments for each
data point for faster memory access. First, centroids are scaled by
the number of members assigned to them in the previous iteration.
Next, an array in shared memory is filled with both current and
previous assignments for as many data points as can fit in shared
memory. Threads then iterate through the assignments. If the point
was previously in a thread’s cluster but now is not, then the data
point is subtracted from the scaled centroid. If the data point now
belongs to the thread’s cluster, the point is added to the total. In
any other case, the point is skipped.

Remaining data points are processed by repeatedly filling shared
memory with the next batch of assignments and updating the cen-
troids accordingly.

Finally, the resulting intermediate value is divided by the new
count to find the new centroid. During execution, both centroids
and data set are kept in global memory. KMCUDA’s strategy allows
performance to scale well with respect to the number of clusters
because each thread is assigned a centroid to update. Additionally,
performance scales reasonably well with respect to the number
of data points. This occurs because global memory accesses are
minimized to only those points for which the point’s assignment
changes with respect to the thread’s cluster.

Speeding up K-Means Algorithm by GPU. An approach pro-
posed by Zhao et. al in [25] computes temporary centroids on the
GPU and then copies them back to the CPU for final processing. Dur-
ing the subsequent iteration, these new centroids must be copied
back to the GPU. This data transfer incurs a large penalty, which
dominates the update time. Although this pattern can be translated
to other algorithms, the cost of transferring data between the host
and device has a major impact in the overall application runtime.

5 Design
To support our claim that offloading concurrent algorithms to the
GPU should be considered as a feasible and less laborious alter-
native to providing a parallel (i.e., without data races) solution
of a given problem, we design four lock-based algorithms imple-
menting Lloyd’s k-means. These algorithms draw from well-known
strategies for concurrent CPU programming while targeting opti-
mizations specific to GPUs.

For our implementation, we split the update phase into two
kernels: a summation kernel and a normalization kernel. The sum-
mation kernel calculates a sum of all members for each cluster and
also records the number of members belonging to each cluster. The
normalization kernel then divides each sum by the cluster’s total
number of members to find the new cluster center. The latter is
trivial to implement and does not introduce any conflicts, however
the former contains data dependency. To understand the effects of
our lock-based synchronization on the GPU, our implementations
differ exclusively in the summation portion of the update phase.

Similar to CPUs, weak memory behaviors exist on the GPU [4].
For this reason, it is necessary to declare all communally accessed
and updated data as volatile and use memory fences to guarantee
visibility of concurrent updates on shared memory locations for all

4

Don’t Forget About Synchronization! A Case Study of K-Means on GPU PMAM’19 , February 17, 2019, Washington, DC, USA

threads. In contrast, optimizations unique to the GPU (i.e., massive
parallelism and shared memory) are an integral part of developing
high performance GPU applications. We leverage both a traditional
concurrency approach and GPU specific architecture to realize
lock-based mutual exclusion on GPU.

K-means can either be parallelized over the data points or the
clusters; each strategy has their advantages. Recall from Section 4
that in order to eliminate conflicts, parallel implementations must
parallelize over clusters. Each thread is responsible for updating
one cluster. In this way, there are never two threads attempting to
update the same cluster. However, this is not ideal given that typi-
cally the number of clusters to be found with k-means are far fewer
than the size of the data set [20]. By parallelizing the problem over
the data set instead of the clusters, a concurrent implementation
has potentially greater speedup over a non-conflicting version.

In lieu of looping through the entire data set, a thread is respon-
sible for processing only a single data point. The thread adds the
point to the cluster it belongs to, and increments that cluster’s mem-
bership counter. As a consequence, conflicting updates can occur
because many data points may be members of the same cluster.
To avoid conflicts, we use a spinlock, which mimics a CPU imple-
mentation, to synchronize memory accesses between threads. Han-
dling concurrent access via locks eliminates the need to completely
re-engineer the problem to fit the GPU by drawing on existing
knowledge from concurrent CPU programming paradigms.

When handling concurrency, we aim to target two attributes spe-
cific to GPU architecture. First, thousands of threads are available on
GPUs, which is far greater than even largemulticore CPUs. Harness-
ing this characteristic for our lock-based algorithms, threads can
either be responsible for a single data point or a single dimension of
a data point. For the latter, we also use finer-grain locks. Addition-
ally, algorithm data and metadata (i.e., locks and membership count)
may reside in either global or shared memory. As described in Sec-
tion 3, shared memory is faster than global memory. Decreased
memory latency allows threads to both acquire/release locks and
update centroids faster. Furthermore, due to shared memory being
private to each thread block, only inter-thread-block contention is
possible, inherently limiting potential conflicts to only the threads
running within a block (more details in Section 5.3).

In the following subsections, we describe the details of each of
our algorithms. Each algorithm was verified on a small dataset with
known cluster centers to assess correctness.

5.1 Global Memory Cluster-Lock (GM-CL)
GM-CL allocates one lock per cluster and stores all cluster data
and metadata in global memory. During the critical path, it serially
updates each dimension of a centroid. One positive consideration
of this algorithm is that it is easy to implement because it does not
leverage shared memory.

Each thread is assigned a single data point to process. Based on
the cluster the point belongs to, the thread attempts to acquire the
lock protecting the cluster. If successful, it performs an element
wise addition of the data point to the centroid and increments the
cluster’s membership counter (stored in the algorithm’s metadata).
When finished, it releases the lock for use by other threads. When
a thread is unsuccessful, its branch diverges causing the thread to
wait for all successful threads within its warp to complete before
reattempting lock acquisition. This is an artifact of the lock-step
execution of SIMT processing. Figure

After all the summation is complete, the normalization kernel
divides each cluster centroid by the associated members counter to
find the updated center.

5.2 Global Memory Dimension-Lock (GM-DL)
One simple way to improve upon GM-CL is to reduce each thread’s
workload and use finer-grain locks. Specifically for GM-DL, each
thread is responsible for only one dimension of a data point and only
updates the same dimension of the corresponding cluster center.
Additionally, each dimension of a cluster is protected by a lock,
increasing the lock granularity compared to GM-CL.

Apart from the previously mentioned differences with respect
to GM-CL, the algorithm follows a similar behavior. A thread ac-
quires the lock for a given centroid dimension, adds the point’s
corresponding dimension to the running total, and increments the
membership counter, only if it is responsible for the first dimen-
sion. Once complete, it releases the lock. Finally, the normalization
kernel runs to divide each centroid by the number of members for
each cluster.

5.3 Shared Memory Cluster-Lock (SM-CL)
SM-CL exploits shared memory. Because shared memory is limited,
there is a possibility that not all cluster data and metadata (i.e.,
locks) can fit at one time. If the memory needed for all clusters
exceeds what is available on the architecture, the algorithm updates
the cluster centers in chunks.

As is the case in all of our lock-based implementations, before
launching the kernel requests enough threadblocks such that every
thread considers at most one data point. For each iteration, after the
clusters are initialized in shared memory, threads update centroids
based on the thread’s assigned data point. Threads whose data point
is a member of a cluster in the current chunk in shared memory
make progress for that iteration, while the others wait their turn.

As mentioned, data in shared memory are only visible to threads
within the same thread block, therefore, after the clusters are up-
dated locally, one thread per thread block is assigned to update the
versions in global memory. The centroids reside in global memory,
maintain locks and are updated similarly to GM-CL.

One advantageous side effect of using shared memory is the
capability of managing the contention among parallel threads. In
fact, because shared memory can only be seen by threads in the
same thread block, and because the number of running threads
in the same thread block is restricted to the number of cores on
an SM, the maximum possible contention on clusters in shared
memory is reduced when compared to contention for clusters in
global memory, which all threads can access.

Because shared memory is private to each thread block, the
theoretical maximum contention on clusters in shared memory is
equal to the number of threads in a thread block. However, based
on our current architecture and configuration, we ensure that only
one thread block will be scheduled per SM. A thread block will run
on the same SM for its lifetime; therefore the possible contention
on each lock residing in shared memory is bound by the number of
cores per streaming multiprocessor.

5.4 Shared Memory Dimension-Lock (SM-DL)
SM-DL merges both fine granularity and shared memory. SM-DL
differs from SM-CL in the following ways. First, the amount of

5

PMAM’19 , February 17, 2019, Washington, DC, USA Jacob Nelson and Roberto Palmieri

metadata to be stored increases by a factor of the number of di-
mensions, since each dimension must keep a lock. Additionally, a
thread’s critical path is reduced to only processing a single dimen-
sion of a data point. Although finer granularity increases the level
of parallelism, there is more metadata to handle, which consumes
space in shared memory at the cost of storing fewer clusters in
shared memory. Accordingly, to process the same amount of data,
the algorithm must execute more iterations to calculate all clusters.

5.5 Shared-Nothing Parallel Algorithms
We also implement four parallel algorithms that exploit the same
granularity and memory mechanisms (i.e., global and shared mem-
ory) as the lock-based approaches but avoid synchronization by
parallelizing over clusters. For these algorithms, metadata only con-
sists of the membership count. The first, named GM-CT (Global
Memory, Cluster per Thread), assigns a cluster to each thread, stor-
ing data and metadata in global memory. The thread loops through
all data points and adds members to the cluster’s running sum,
incrementing the membership count along the way.

In the second approach, GM-DT (Global Memory, Dimension
per Thread), a thread is responsible for only one dimension of a
cluster. Again, each thread loops through all data points, updates
the corresponding dimension of members of the thread’s cluster,
and increments the membership count.

The two remaining algorithms (SM-CT and SM-DT) use the same
approaches as GM-CT and GM-DT, but store all data and metadata
in shared memory.

As will be clear later, these algorithms are unable to perform
well because they do not allow the same degree of parallelism.

6 Evaluation
To demonstrate the viability of fine-grain synchronous program-
ming on the GPU, we compare our four different lock-based imple-
mentations of k-means, namely GM-CL, GM-DL, SM-CL, SM-DL,
against our competitor, KMCUDA. As discussed in Section 5, each
algorithm varies in lock granularity and memory location (i.e.,
global or shared). Each run consists of the size of the data set, n,
the dimensionality of data, d , and the number of clusters used by
k-means, k .

All tests are executed on an Intel Core i7-7700k processor with a
NVIDIA GeForce GTX-1080 GPU. Code is written in C++ and GPU
kernels in CUDA 9.1 for NVIDIA compute capability 6.1 (Pascal).
The GPU used in our experiments has 20 streaming multiprocessor
units (SMs), 128 cores per SM, 8 GB of main memory and up to
49KB of shared memory per thread block. For all runs, thread blocks
consist of 1024 threads. This is the maximum number available.

We begin our study by using the synthetic dataset and analyzing
how algorithms behave at different values of k , which acts as a knob
to control the level of contention in the system. When generating
data sets, values for each dimension are taken from a uniform
distribution from 0 to 1. Again, using a uniformly distributed dataset
removes potential bias from the data making comparisons more
fair. Later in Figure 6, we show that the trends seen in the synthetic
dataset hold in a real-world scenario. To compare algorithms, we
record the average time of the update phase for each algorithm. It is
important to note that this measurement includes the normalization
kernel because in KMCUDA it is implicitly done during centroid
update. Initially, we test each implementation on a data set of 5000

Figure 1. Average run time of the update phase for each algorithm
for n = 5000. The lower the run time the better.

points with 32-dimensional data. Next, we increase n to 50000
to understand behavior for larger data sets. Finally, we return to
n = 5000 but vary data set dimensionality, d , for three distinct
values of k .

As a summary of our findings, the best performing lock-based
strategies are GM-DL and SM-CL, depending on the level of con-
tention within the system. When contention is high, SM-CL alle-
viates conflicts by managing the possible contention on clusters
and reduces memory access latency. However, when contention is
low, GM-DL is faster because threads are less likely to conflict and
the critical path is shorter, both due to finer lock granularity. Two
of our purely parallel implementations (i.e., GM-DT and SM-DT)
outperform KMCUDA only when all requested thread blocks can
be simultaneously scheduled to SMs. The other two parallel algo-
rithms, GM-CT and SM-CT, never offer benefits over the competitor
and are therefore ignored to increase readability.

Going into the details of our evaluation, we first analyze the
behavior of our competitor KMCUDA. Recall from Section 4 that
while the Yin-Yang algorithm employed in KMCUDA is generally
fast due to reducing the number of necessary comparisons dur-
ing the assignment phase, it also optimizes the update phase by
computing new centroids in parallel without conflicts. Specifically,
each centroid is only updated when data points change member-
ship with respect to its cluster. Based on this and the fact that one
thread processes each centroid, average runtimes for KMCUDA
(shown in Figure 1 depend on the number of reassignments made.
If there are few reassignments, then threads do little work. A con-
sequence of this is that average runtimes for KMCUDA are directly
affected by how close initial centroids are to the optimal solution.
The variability in the lower values of k reflects this dependency.

Our lock-based approaches demonstrate more predictable be-
havior, determined mainly by contention on the shared clusters
and by resource restrictions (e.g., available threads).

The simplest strategy, GM-CL, performs very poorly when con-
tention is high because of waiting threads. When more clusters are
used, conflicting memory accesses are less likely to occur. Figure 1
shows that after k = 64 lock contention no longer dominates the
runtime. In fact, from k = 64 to k = 4096, this algorithm has an
average speedup of 3.1x over KMCUDA. The maximum speedup
occurs at k = 512 with 4.2x boost in performance (speedups over
KMCUDA reported in Figure 2).

6

Don’t Forget About Synchronization! A Case Study of K-Means on GPU PMAM’19 , February 17, 2019, Washington, DC, USA

Figure 2. Average speedup over KMCUDA of the update phase for each algorithm for n = 5000. The higher the speedup the better. The
trendlines show the moving average for both GM-DL and SM-CL.

Next we evaluate GM-DL, the finer-grained version of GM-CL.
On average, between k = 64 and k = 4096 GM-DL offers 8.1x
improvement over KMCUDA. This approach is able to produce a
maximum speedup of 14.1x when k = 2048. Generally, this algo-
rithm outperforms KMCUDA, with the exception that for k < 32
the algorithm suffers from performance hits due to high lock con-
tention. Generally, the trend of GM-DL is similar to that of GM-CL
but with increased benefits. This is due to finer lock granularity,
allowing more threads to make progress, as well as a shorter critical
path because each thread is only responsible for a single dimension.
These characteristics help GM-DL to perform well when processing
many clusters.

In both global memory implementations, the primary perfor-
mance bottleneck, aside from lock contention, is the number of
available hardware threads.

After considering different granularity, we introduce shared
memory. In general and as expected, shared memory helps when
the overhead of managing it does not dominate the runtime. In
k-means, shared memory is most beneficial when a single lock
protects each cluster (i.e., SM-CL). To recall, SM-CL first initializes
cluster placeholders in shared memory, updates them according
to the data points assigned to each thread, then updates the corre-
sponding versions stored in global memory.

Contrary to GM-CL, SM-CL performs well at smaller values of k .
SM-CL provides an average speedup over KMCUDA of 8.4x from
k = 8 to k = 256. Its maximum speedup is 12x, when k = 32. No-
tably, because sharedmemory is used, contention in sharedmemory
is constrained to the number of running threads and contention on
global data is limited by the number of SMs. The former is unique to
GPU hardware organization and processing constraints. Remember
that shared memory is private to each thread block, meaning only
threads in the same block may access it. Not only is contention
limited by block size, but also, because thread blocks cannot span
two SMs, contention is limited to the number of processing units
available on one SM. Contention on cluster in global memory is
reduced because only one thread per thread block is assigned to up-
date the centroids in global memory, using the versions computed
in shared memory.

Shared memory only has a capacity of 49KB per thread block,
which becomes saturated at k = 256. Beyond that point, not all
clusters and metadata can fit in shared memory, which decreases
the performance benefits (see Figure 1).

Figure 3. Average runtimes of the update phase of k-mean for each
algorithm with n = 50000.

SM-DL also offers improvements over KMCUDA, but only for
2 < k < 64. At k = 128, shared memory can no longer hold all
data and metadata so multiple iterations must be performed to
process all clusters. In this case, the benefits of shared memory are
dominated by the cost of managing that memory, which results in
poor performance.

We conclude our experiments forn = 5000 by addressing the two
parallel algorithms, GM-DT and SM-DT. GM-DT stores all cluster
data and metadata in global memory, while SM-DT stores them
in shared memory. For both algorithms, each thread processes a
dimension of a cluster. We observe speedups only when all thread
blocks can fit on the GPU (i.e., when k < 2048). For larger values
of k , we see a linear increase in run time due to the inability to
simultaneously schedule all required thread blocks.

To understand how our lock-based approaches scale with respect
to the number of data points, we perform the same tests discussed
above with n = 50000. In general, the previously described trends
hold for the larger data set as can be seen in Figure 3 (runtime) and
Figure 4 (speedup). Again, GM-DL performs best when contention is
low, while SM-CL performs best when contention is high. Similarly,
the two plotted parallel versions, GM-DT and SM-DT, require more
thread blocks than what can be simultaneously scheduled, leading
to poor performance when k > 1024.

One upshot of using more data points is that it gives an under-
standing of algorithm behavior when hardware resources become

7

PMAM’19 , February 17, 2019, Washington, DC, USA Jacob Nelson and Roberto Palmieri

Figure 4. Speedup of each algorithm over KMCUDA for varied values of k . For GM-DL and SM-CL we include trendlines for the moving
averages of each implementation.

(a) k = 32 - High Contention (b) k = 256 - Moderate Contention (c) k = 2048 - Low Contention

Figure 5. Three plots demonstrating how the best performing algorithms behave when varying the dimensionality of the data set and the
number of clusters, k . For all of them, the data set consists of 5000 points.

the primary constraint. For example, all data can fit in the L2 cache
for n = 5000 but this is not the case for higher values of n. Although
the overall shape of KMCUDA’s runtime is the same for both con-
figurations of n. However, the runtime for n = 50000 is more than
10x slower than n = 5000 due to cache line eviction. Additionally,
with larger values of k , KMCUDA requires more shared memory
than is available. Particularly when k > 8192, the previous and
current assignments can no longer fit in shared memory causing
the average update time to increase suddenly.

In contrast to our competitor, GM-CL and GM-DL continue to
operate as before; they perform well at large numbers of clusters
and perform poorly for low k . Having more data points, compared
ton = 5000, increases the possibility of conflictingmemory accesses.
As a result, runtimes for GM-CL are more than 10x slower than for
n = 5000 fork < 1024. GM-DL takes advantage of fine-grain locking
to achieve faster runtimes earlier, producing an average speedup
over KMCUDA of 20.7x across all k and a maximum speedup of
74.8x at k = 32768.

As is the case for n = 5000, the two shared memory algorithms
(SM-CL and SM-DL) perform better than their global memory coun-
terparts at lower k values, but eventually become restricted by the
size of shared memory. Exactly as happens to KMCUDA, these algo-
rithms can no longer store the required cluster data and metadata
in shared memory, forcing them to iterate more than once. For
k > 128, the cost of shared memory management outweighs its
benefits. In the case of SM-DL, surpassing this threshold results in

a sudden increase of the average update time as seen in Figure 3.
SM-CL requires fewer total iterations to pass all clusters through
shared memory, because more clusters can fit per iteration, thus the
increase in runtime is less dramatic. SM-CL averages 7.2x speedup
across all k and a maximum speedup of 25.5x when k = 32. Im-
portantly, for k < 1024 the average speedup is 11.3x and 0.97x
for k ≥ 1024, demonstrating that shared memory is good when
contention is high.

We end the discussion by commenting on the two relevant paral-
lel implementations, GM-DT and SM-DT. Again, we do not include
the versions which process one cluster per thread because in our
experiments they never perform better than any other implementa-
tion. The sudden increase in average runtime for both algorithms
(GM-DT and SM-DT) occurring at k = 1024 results from the hard-
ware restriction on simultaneously running thread blocks. In fact,
our testbed makes 20 SMs available, with two thread blocks running
on each for a total of 40 concurrently running thread blocks. For
k greater than 1024 clusters, the algorithm allocates more than 40
thread blocks causing some thread block to wait until an SM is
available before being scheduled to run.

In addition to testing different values of n, we also run experi-
ments to understand the implications of data set dimensionality,
d . Figure 5 shows the results. All tests are run with a data set con-
sisting of 5000 data points, sampled from a uniform distribution
between 0 and 1. We test KMCUDA, GM-CL, GM-DL and SM-CL.

8

Don’t Forget About Synchronization! A Case Study of K-Means on GPU PMAM’19 , February 17, 2019, Washington, DC, USA

SM-DL is not included because it cannot fit all of the necessary
data and metadata in shared memory for large d .

Figure 6.Average runtimes of the update phase of k-means for each
algorithm for edge data from the real-world Corel Image Feature
Data Set.

Figure 5a shows the average update times as d ranges from 16 to
8192 for k = 32. This value of k represents settings where SM-CL is
fastest. For low dimensional data (k < 64), SM-CL is the fastest to
update clusters because it takes full advantage of shared memory.
However, GM-DL becomes the better algorithm at larger values of
d . Finer granularity and shorter critical path give it an advantage
over the other algorithms in terms of runtime.

We also run the same experiment for k = 256 (see Figure 5b).
With this test we are targeting moderate contention in the system.
As for k = 32, the results demonstrate that increasing d reduces
the effectiveness of SM-CL. Fewer clusters are able to fit in shared
memory causing more iterations to occur. Although the plot is
cropped to increase readability, SM-CL eventually becomes slower
than GM-CL for k > 1024.

Finally, in Figure 5c we configure k = 2048. Here, contention
is lowest between the three values of k and GM-DL remains the
obvious winner for all values of d .

To understand the implications of using synthetic data sets, we
also test a real-world data set to validate that the observed results
are not a simply a function of the data itself. For this we use a
subset of the Corel Image Features Data Set [32] provided by the
Stanford Transactional Applications for Multi-processing (STAMP)
project [30]. The data set consists of 17695 images represented
by two features: color and edge. The color data has 9 dimensions,
while the edge data consists of 18 dimensions. In the interest of
space, we only report the results for the edge data but note that the
observed trends also appear in the color data. Figure 6 displays the
average runtime for each algorithm as a function of k . The primary
difference between the real world data set and the contrived data
is the behavior of KMCUDA, which does not improve with higher
values of k for a real-world data set. These results support our
findings and show worse performance for our competitor as k
increases, thus showing that the trends we found are orthogonal to
the particular data used.

7 Discussion
In this section, we overview our findings specific to k-means and our
evaluation study, then, we generalize those findings to concurrent
programming on the GPU.

7.1 K-Means Findings
As a final remark of our evaluation study, we clearly identify two
implementations (GM-DL and SM-CL) that leverage fine-grain syn-
chronization to provide at least competitive, and most of the time
significantly better, performance than the implementation opti-
mized to be parallel without code dependency. The lock-based
algorithms we design limited GPU specialized work required by
the programmer, while giving speedup over the competitor in most
scenarios.

As previously observed, when values of k are low and lock con-
tention is high, SM-CL performs well. This is not only because of
faster memory accesses, but also because the hardware inherently
limits the number of threads that may conflict at a given memory
address. Recall that the GPU used in our experiments has 128 cores
per SM. Because shared memory is private to each thread block and
each thread block runs on one SM, only 128 threads may conflict on
shared memory locations. In contrast, global memory implementa-
tions have potentially thousands of threads attempting to access the
same memory. In addition to restricting the potential contention,
only one thread per thread block executes when updating clusters
in global memory. Again, in this case the hardware restricts con-
tention because there is a limited number simultaneously running
thread blocks (e.g., 20 for our configurations on the GTX-1080).

While shared memory is beneficial when contention is high,
it is also limited to low dimensional data sets. When the memory
required to store all clusters and their metadata surpasses the shared
memory available, global memory becomes the attractive option.
Indeed, GM-CL and GM-DL update clusters faster than the shared
memory versions for high dimensional data sets. In the end, GM-DL
provides the best generalized performance. Furthermore, it is the
shortest (24 lines of code) implementation of the update phase;
compared to SM-DL (66 lines) and KMCUDA (71 lines).

7.2 General Guidelines
After designing and implementing a number of lock-based algo-
rithms we evaluated howwell they compared to KMCUDA, a highly
engineered parallel solution to clustering. Our results demonstrate
that re-engineering is not necessarily the best solution, but that
using a basic spinlock implementation can lead to good results.

Two common patterns emerge from our evaluation (shown by
the moving average trendlines in Figure 2 and Figure 3). First, when
contention is high, algorithms can benefit from storing the data
in shared memory. Specifically, we saw that SM-CL has the fastest
average update time when contention is higher. Second, finer lock
granularity led to better performance due to a limited critical path
and lower contention (as seen by GM-DL).

Our results culminate in the following guidelines based on our
experiences implementing lock-based k-means.
(G1) When contention is high, prefer shared memory.
(G2) Fine grain synchronization complements the GPUs mas-

sively parallel architecture.
Regarding G1, capitalizing on the speed of shared memory gives

the best performance for high contention situations. Although
resource restrictions can counteract its benefit, shared memory
also forces a hierarchical solution. Thread blocks compute locally
(i.e., in shared memory) then push their results to global memory.
A layered strategy considerably reduces conflicts in both shared
and global memory.

9

PMAM’19 , February 17, 2019, Washington, DC, USA Jacob Nelson and Roberto Palmieri

Regarding G2, when expected contention is moderate to low, the
best option is to target the characteristic unique to GPUs, namely
their massively parallel architecture. Both finer division of work
and finer grained locking give notable performance benefits.

In general, by following the proposed guidelines, G1 and G2,
programmers have a competitive alternative to develop solutions
for problems that otherwise would require a redesign in order to
eliminate data dependency and execute parallel on GPU. Allowing
concurrency enables better GPU computing resource utilization
because it relaxes constraints needed to support parallelism where
conflicts are avoided explicitly by design.

8 Conclusion
In this paper we implemented four lock-based k-means solutions
for the GPU to demonstrate that handling concurrency (even in the
form of naive spinlocks) can be beneficial on the GPU, and might
save the effort of re-engineering existing solutions to eliminate
data races. Furthermore, we provided guidelines for GPU lock-
based algorithms based on our findings. Specifically, our results
suggested that shared memory can benefit concurrent applications
when contention is high, and that fine granularity is helpful to
take advantage of the parallelism available on GPUs. Intentionally
ignoring fine-grain synchronization on the GPU can lead to missed
opportunities to fully utilize its capabilities. Future work will focus
on extending the experiments to evaluate multi-GPU systems and
designing flexible APIs that can dynamically elect a locking scheme
based on available resources and runtime information.

Acknowledgments
This material is based upon work supported by the Air Force Office
of Scientific Research under award number FA9550-17-1-0367.

References
[1] 2015. GPU Pro Tip: Fast Histograms Using Shared

Atomics on Maxwell. https://devblogs.nvidia.com/
gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/

[2] 2017. Try to use lock and unlock in CUDA. https://devtalk.nvidia.com/default/
topic/1014009/try-to-use-lock-and-unlock-in-cuda/

[3] 2018. KMCUDA. https://github.com/src-d/kmcuda
[4] Jade Alglave, Mark Batty, Alastair F Donaldson, Ganesh Gopalakrishnan, Jeroen

Ketema, Daniel Poetzl, Tyler Sorensen, and John Wickerson. 2015. GPU con-
currency: Weak behaviours and programming assumptions. ACM SIGARCH
Computer Architecture News 43, 1 (2015), 577–591.

[5] AMD. 2016. ROCm, a New Era in Open GPU Computing. https://rocm.github.io
[6] Peter Bakkum and Kevin Skadron. 2010. Accelerating SQL database operations

on a GPU with CUDA. In Proceedings of the 3rd Workshop on General-Purpose
Computation on Graphics Processing Units. ACM, 94–103.

[7] Antonio Barbalace, Marina Sadini, Saif Ansary, Christopher Jelesnianski, Ak-
shay Ravichandran, Cagil Kendir, Alastair Murray, and Binoy Ravindran. 2015.
Popcorn: bridging the programmability gap in heterogeneous-ISA platforms. In
Proceedings of the Tenth European Conference on Computer Systems, EuroSys 2015,
Bordeaux, France, April 21-24, 2015, Laurent Réveillère, Tim Harris, and Maurice
Herlihy (Eds.). ACM, 29:1–29:16.

[8] Andrew Baumann, Paul Barham, Pierre-Évariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
2009. The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the 22nd ACM Symposium on Operating Systems Principles 2009,
SOSP 2009, Big Sky, Montana, USA, October 11-14, 2009, Jeanna Neefe Matthews
and Thomas E. Anderson (Eds.). ACM, 29–44.

[9] A. Brownsword,W.W. Fung, I. Singh, and T. M. Aamodt. 2012. Kilo TM: Hardware
Transactional Memory for GPU Architectures. IEEE Micro 32 (03 2012), 7–16.

[10] Bryan Catanzaro and Levi Barnes. 2015. NVIDIA K-means. https://github.com/
NVIDIA/kmeans

[11] Daniel Cederman, Philippas Tsigas, and Muhammad Tayyab Chaudhry. [n. d.].
Towards a Software Transactional Memory for Graphics Processors.

[12] S. Chen, L. Peng, and S. Irving. 2017. Accelerating GPU hardware transactional
memory with snapshot isolation. In 2017 ACM/IEEE 44th Annual International
Symposium on Computer Architecture (ISCA). 282–294.

[13] Adam Coates and Andrew Y Ng. 2012. Learning feature representations with
k-means. In Neural networks: Tricks of the trade. Springer, 561–580.

[14] Gabriella Csurka, Christopher Dance, Lixin Fan, Jutta Willamowski, and Cédric
Bray. [n. d.]. Visual categorization with bags of keypoints.

[15] Inderjit S Dhillon and Dharmendra S Modha. 2001. Concept decompositions for
large sparse text data using clustering. Machine learning 42, 1-2 (2001), 143–175.

[16] Yufei Ding, Yue Zhao, Xipeng Shen, Madanlal Musuvathi, and Todd Mytkowicz.
2015. Yinyang k-means: A drop-in replacement of the classic k-means with
consistent speedup. In International Conference on Machine Learning. 579–587.

[17] A. ElTantawy and T. M. Aamodt. 2016. MIMD synchronization on SIMT archi-
tectures. In 2016 49th Annual IEEE/ACM International Symposium on Microarchi-
tecture (MICRO). 1–14.

[18] A. ElTantawy and T. M. Aamodt. 2018. Warp Scheduling for Fine-Grained
Synchronization. In 2018 IEEE International Symposium on High Performance
Computer Architecture (HPCA). 375–388.

[19] Wilson WL Fung and Tor M Aamodt. 2013. Energy efficient GPU transactional
memory via space-time optimizations. In Proceedings of the 46th Annual IEEE/ACM
International Symposium on Microarchitecture. ACM, 408–420.

[20] Greg Hamerly and Charles Elkan. 2004. Learning the k in k-means. In Advances
in neural information processing systems. 281–288.

[21] Mark Harris. 2013. Using Shared Memory in CUDA C/C++. https://devblogs.
nvidia.com/using-shared-memory-cuda-cc/

[22] Kevin Hsieh, Eiman Ebrahimi, Gwangsun Kim, Niladrish Chatterjee, Mike
O’Connor, Nandita Vijaykumar, Onur Mutlu, and Stephen W Keckler. 2016.
Transparent offloading and mapping (TOM): Enabling programmer-transparent
near-data processing in GPU systems. ACM SIGARCH Computer Architecture
News 44, 3 (2016), 204–216.

[23] S. C. Lai and P. Y. Lau. 2018. Upper body action classification for multiview images
using K-means. In 2018 International Workshop on Advanced Image Technology
(IWAIT). 1–4.

[24] Ang Li, Gert-Jan van den Braak, Henk Corporaal, and Akash Kumar. 2015. Fine-
Grained Synchronizations and Dataflow Programming on GPUs. In Proceedings
of the 29th ACM on International Conference on Supercomputing (ICS ’15). ACM,
New York, NY, USA, 109–118.

[25] Y. Li, K. Zhao, X. Chu, and J. Liu. 2010. Speeding up K-Means Algorithm by
GPUs. In 2010 10th IEEE International Conference on Computer and Information
Technology. 115–122.

[26] Dekang Lin and Xiaoyun Wu. 2009. Phrase clustering for discriminative learning.
In Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the
4th International Joint Conference on Natural Language Processing of the AFNLP:
Volume 2-Volume 2. Association for Computational Linguistics, 1030–1038.

[27] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym. 2008. NVIDIA Tesla: A
Unified Graphics and Computing Architecture. IEEE Micro 28, 2 (March 2008),
39–55.

[28] S. Lloyd. 1982. Least squares quantization in PCM. IEEE Transactions on Informa-
tion Theory 28, 2 (March 1982), 129–137.

[29] Vadim Markovtsev. 2016. Towards Yinyang K-means on GPU. https://blog.
sourced.tech/post/towards_kmeans_on_gpu/

[30] Chi Cao Minh, JaeWoong Chung, Christos Kozyrakis, and Kunle Olukotun. 2008.
STAMP: Stanford transactional applications for multi-processing. InWorkload
Characterization, 2008. IISWC 2008. IEEE International Symposium on. 35–46.

[31] NVIDIA. 2018. Compute Capability 7.x. https://docs.nvidia.com/cuda/
cuda-c-programming-guide/index.html#compute-capability-7-x

[32] Michael Ortega-Binderberger, Kriengkrai Porkaew, and Sharad Mehrotra. 1999.
Corel Image Features Data Set. data retrieved from University of Califor-
nia Irvine Machine Learning Repository, http://archive.ics.uci.edu/ml/datasets/
Corel+Image+Features.

[33] O. J. Oyelade, O. O. Oladipupo, and I. C. Obagbuwa. 2010. Application of k Means
Clustering algorithm for prediction of Students Academic Performance. CoRR
abs/1002.2425 (2010). arXiv:1002.2425

[34] John E. Stone, David Gohara, and Guochun Shi. 2010. OpenCL: A Parallel
Programming Standard for Heterogeneous Computing Systems. IEEE Des. Test
12, 3 (May 2010), 66–73.

[35] Yunlong Xu, Lan Gao, Rui Wang, Zhongzhi Luan, Weiguo Wu, and Depei Qian.
2016. Lock-based Synchronization for GPU Architectures. In Proceedings of the
ACM International Conference on Computing Frontiers (CF ’16). ACM, New York,
NY, USA, 205–213.

[36] Y. Xu, R. Wang, N. Goswami, T. Li, and D. Qian. 2014. Software Transactional
Memory for GPU Architectures. IEEE Computer Architecture Letters 13, 1 (Jan
2014), 49–52.

10

https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://devblogs.nvidia.com/gpu-pro-tip-fast-histograms-using-shared-atomics-maxwell/
https://devtalk.nvidia.com/default/topic/1014009/try-to-use-lock-and-unlock-in-cuda/
https://devtalk.nvidia.com/default/topic/1014009/try-to-use-lock-and-unlock-in-cuda/
https://github.com/src-d/kmcuda
https://rocm.github.io
https://github.com/NVIDIA/kmeans
https://github.com/NVIDIA/kmeans
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://devblogs.nvidia.com/using-shared-memory-cuda-cc/
https://blog.sourced.tech/post/towards_kmeans_on_gpu/
https://blog.sourced.tech/post/towards_kmeans_on_gpu/
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-7-x
https://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#compute-capability-7-x
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://archive.ics.uci.edu/ml/datasets/Corel+Image+Features
http://arxiv.org/abs/1002.2425

	Abstract
	1 Introduction
	2 Overview
	2.1 Methodology
	2.2 Contributions

	3 GPU Background
	4 K-means Background
	4.1 K-means Algorithms: Lloyd & Yin-Yang
	4.2 Implementations of K-means for GPU

	5 Design
	5.1 Global Memory Cluster-Lock (GM-CL)
	5.2 Global Memory Dimension-Lock (GM-DL)
	5.3 Shared Memory Cluster-Lock (SM-CL)
	5.4 Shared Memory Dimension-Lock (SM-DL)
	5.5 Shared-Nothing Parallel Algorithms

	6 Evaluation
	7 Discussion
	7.1 K-Means Findings
	7.2 General Guidelines

	8 Conclusion
	References

