
NUMASK: High Performance Scalable Skip List1

for NUMA2

Henry Daly3

Lehigh University, Bethlehem, PA, USA4

hwd219@lehigh.edu5

Ahmed Hassan6

Alexandria University, Alexandria, Egypt7

ahmed.hassan@alexu.edu.eg8

Michael F. Spear9

Lehigh University, Bethlehem, PA, USA10

spear@lehigh.edu11

Roberto Palmieri12

Lehigh University, Bethlehem, PA, USA13

palmieri@lehigh.edu14

Abstract15

This paper presents NUMASK, a skip list data structure specifically designed to exploit the16

characteristics of Non-Uniform Memory Access (NUMA) architectures to improve performance.17

NUMASK deploys an architecture around a concurrent skip list so that all metadata accesses18

(e.g., traversals of the skip list index levels) read and write memory blocks allocated in the NUMA19

zone where the thread is executing. To the best of our knowledge, NUMASK is the first NUMA-20

aware skip list design that goes beyond merely limiting the performance penalties introduced by21

NUMA, and leverages the NUMA architecture to outperform state-of-the-art concurrent high-22

performance implementations. We tested NUMASK on a four-socket server. Its performance23

scales for both read-intensive and write-intensive workloads (tested up to 160 threads). In write-24

intensive workload, NUMASK shows speedups over competitors in the range of 2x to 16x.25

2012 ACM Subject Classification Information systems Data structures26

Keywords and phrases Skip list, NUMA, Concurrent Data Structure27

Digital Object Identifier 10.4230/LIPIcs.DISC.2018.1828

Funding This material is based upon work supported by the Air Force Office of Scientific Re-29

search under award number FA9550-17-1-0367 and by the National Science Foundation under30

Grant No. CNS-1814974.31

Acknowledgements Authors would like to thank anonymous reviewers for the insightful com-32

ments, Maged Michael and Dave Dice for the early feedback on the paper, and Vincent Gramoli33

for agreeing to integrate NUMASK into Synchrobench.34

1 Introduction35

Data structures are one of the most fundamental building blocks in modern software. The36

creation of performance-optimized data structures is a high-value task, both because of37

intellectual contributions related to algorithms’ design and correctness proofs, and because38

© Henry Daly and Ahmed Hassan and Michael F. Spear and Roberto Palmieri;
licensed under Creative Commons License CC-BY

32nd International Symposium on Distributed Computing (DISC 2018).
Editors: Ulrich Schmid and Josef Widder; Article No. 18; pp. 18:1–18:19

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:hwd219@lehigh.edu
mailto:ahmed.hassan@alexu.edu.eg
mailto:spear@lehigh.edu
mailto:palmieri@lehigh.edu
http://dx.doi.org/10.4230/LIPIcs.DISC.2018.18
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


18:2 NUMASK: High Performance Scalable Skip List for NUMA

of the impact that even a single data structure can have on the performance of enterprise-39

level applications. For example, the use of a high-performance non-blocking skip list is the40

fundamental innovation in the MemSQL database [29].41

Current and (likely) future generations of enterprise-level computing infrastructures42

deploy on a hardware design known as Non-Uniform Memory Access (or NUMA) [22, 24],43

which specifies that memory access latency varies depending on the distance between the44

processor performing the memory access and the memory chip currently holding the memory45

location. With NUMA, the memory hierarchy is more complex than before; if a system46

possesses multiple discrete CPU chips (i.e., physical processors installed on different CPU47

sockets), each will have faster access to a locally-attached coherent memory and slower (but48

still cache-coherent) access to the memories attached to other chips. This is mainly because49

the bandwidth of the hardware channel that connects these multiple chips is limited and its50

performance is generally poor. As a consequence of these considerations, we can claim that51

NUMA prefers locality; therefore, applications or systems should be (re)designed with this52

guideline in mind. Such a claim has been confirmed by a number of recent works [27, 4, 6, 10].53

The performance penalty of NUMA architectures has been quantified by many recent54

efforts [4, 26, 3, 16]. A recurring, although conservative, guideline in those studies is to55

avoid (if possible) scheduling cooperative threads on different processors. Although this56

guideline is valid in some applications where there is a clear separation in data access pattern57

among application threads, it might not be easy to apply in other applications where data is58

maintained as a set of connected items in a linked data structure. For example, searching for59

an item usually forces a thread to traverse multiple elements of the data structure in order60

to reach the target item. Because of this, each operation might produce large traffic on the61

NUMA interconnection; this traffic is the main reason for degraded performance [9].62

Caching will not completely solve the problem either, because concurrent updates mandate63

refreshing cached locations. From our experience, as we show later in the experimental64

results in Section 7, the presence of even a few percentage of update operations results in65

a significant performance drop on NUMA. We conclude that data structures not designed66

for NUMA do not perform well on modern enterprise-level architectures when concurrent67

updates mandate refreshing cached locations.68

In this paper we present NUMASK, a novel concurrent skip list data structure [20]69

tailored to a NUMA organization. Unlike existing NUMA-aware solutions for data structures70

(e.g., [6] see Section 2 for details), our design does not limit parallelism to cope with NUMA;71

rather, it leverages NUMA characteristics to improve performance. What makes our proposal72

unique is that its advantages hold even for high update rates and contention. We adhered to73

the following considerations throughout the development of NUMASK:74

(a) local memory accesses (i.e. memory close to the executing thread’s processor) are favored;75

(b) traffic across NUMA zones, often produced by synchronization primitives, is avoided.76

In a nutshell, our design produces redundant metadata to be placed on different NUMA77

zones (which meets requirement (a)) and avoids the need of synchronizing this metadata78

across NUMA zones (which satisfies requirement (b)). The final design is a data structure79

that never limits concurrency and at the same time primarily accesses NUMA local memory80

(in our evaluation study, >80% of memory accesses are local).81

The simple observation that motivated our work is that in a skip list, the actual data82

resides in the lowest level of the skip list, and the other levels form an index layer whose task83

is only to accelerate execution of operations. In NUMASK, we exploit this fact in two ways:84

- We define independent index layers (one per NUMA zone) for the skip list. Each operation85

traverses the index layer that is local to the thread that executes it. This way, operations86



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:3

do not need to traverse the interconnection between NUMA zones during the index layer87

traversal. Importantly, we do not keep these index layers consistent with each other; we88

allow them to be different. In fact, having different index layers in different NUMA zones89

does not affect correctness because the actual data (which resides in the lowest level of90

the skip list) is still synchronized.91

- We isolate updates on the index layers in separate (per-NUMA) helper threads instead of92

performing those updates in the critical path of the insert/remove operations. Although93

this isolation may delay the synchronization of the index layers, the (probabilistic)94

logarithmic complexity of the skip list operations can be eventually maintained even with95

lazy index layer updates [18].96

Former designs [8, 12] proposed the isolation of index layer updates in helper threads,97

but none of them defined per-NUMA index layers. That is why in those proposals, the98

NUMA overhead is still significant due to traversing a single index layer. NUMASK inherits99

the idea of applying replication to data structure in order to improve its performance in100

NUMA architectures, as done by [6], but NUMASK targets only metadata and updates such101

metadata lazely.102

We implement NUMASK in C++ and integrate into Sychrobench [17], a comprehensive103

suite of data structures implemented in the same optimized software infrastructure. The104

implementation of NUMASK has been enriched with specific optimizations, such as an105

efficient NUMA memory allocator, developed on top of libnuma [1], to avoid bottleneck.106

We compare the performance of NUMASK with three state-of-the-art concurrent skip lists:107

Fraser [15], No Hotspot [8], and Rotating Skip List [12]. Performance shows up to 16x speed108

up for write workloads and improvements up to 40% in read-intensive workloads. In summary,109

NUMASK hits an important performance goal: in low-contention workloads, NUMASK adds110

no overhead to the high-performance concurrent data structures; and in high-contention111

workloads, NUMASK outperforms all other competitors and keeps scaling (we tested up to112

160 threads) while other competitors stop earlier (at 64 threads in our experiments).113

NUMASK is part of the core release of Synchrobench [17] available at https://github.114

com/gramoli/synchrobench.115

2 Related Work116

Many concurrent variants of the original sequential skip list [28] data structure have been117

proposed in the last decade. Some of them are blocking [6, 21, 19, 20], and others are118

non-blocking [14, 15, 8, 12]. Among the non-blocking designs, which often demonstrate119

improved performance over blocking designs [17], Fraser [15] proposed the use of a CAS120

primitive to create a non-blocking skip list. Crain et al. [8] proposed a contention friendly121

skip list, called No Hotspot, which serves as the foundation of our NUMASK design. The122

main innovation in No Hotspot is that it isolates bookkeeping operations (e.g., updating123

index levels) in a helper thread. The rotating skip list was proposed by Dick et al . [12] to124

further improve No Hotspot’s poor locality of references in order to reduce cache misses.125

However, none of the above designs is optimized for NUMA architectures and thus they all126

generate significant NUMA interconnect traffic.127

Recent uses of skip lists include ordered maps, priority queues, heaps, and database indexes128

(e.g., [29]). The NUMASK design can be applied to these data structures, improving their129

performance through data and index layer separation when deployed in NUMA architectures.130

The impact of NUMA organization on the performance of software components (e.g. data131

structures and thread synchronization) is an important topic. Interestingly, the last decade132

DISC 2018

https://github.com/gramoli/synchrobench
https://github.com/gramoli/synchrobench
https://github.com/gramoli/synchrobench


18:4 NUMASK: High Performance Scalable Skip List for NUMA

saw the proposal of many NUMA-aware building blocks to improve application performance.133

Examples include NUMA-aware lock implementations [11, 5], thread placement policy [23],134

and smart data arrays [27]. Although helpful, the applicability of these components in linked135

data structures is limited due to the memory organization required by data structures in136

order to implement their operations while preserving the asymptotic complexity.137

Few specialized NUMA-aware techniques for data structures have been proposed [6, 4].138

The most relevant to NUMASK is the method proposed by Calciu et al. [6], wherein data139

structures can be made NUMA aware. Using a technique called NR (Node Replication),140

replicas are created across NUMA zones. However, replica synchronization across zones141

forces significant NUMA interconnect traffic. In fact, since synchronous updates of the whole142

data structure (including the searching layer) are assumed, the authors needed a shared143

synchronization log to save and replay update operations on each replica of the data structure.144

Moreover, a read operation would wait for the replay of pending updates in order to guarantee145

its linearization. On the bright side, this approach is a general technique that applies to146

different data structure designs, whereas NUMASK can exploit specific optimizations because147

its goal is to provide a high-performance NUMA-aware skip list. In fact, NUMASK relaxes148

the need of synchronizing different index layer instances; thus, it does not suffer from the149

above overheads which impede scalability.150

Brown et al. [4] proposed a simple design, effective in small-scale deployments, that151

maintains the entire index layer in a single NUMA zone. This solution’s pitfall is its limited152

parallelism. For operations to access NUMA-local memory addresses, either the application153

thread’s execution must be migrated to the processor attached to the desired NUMA zone,154

or the operation must be delegated to one or more serving threads in the target NUMA zone.155

This inherently limits parallelism to a single processor’s maximum computing capability.156

Our new design overcomes all the above limitations: all application and background threads157

operate primarily on NUMA-local memory and perform a negligible number of NUMA-remote158

accesses, eliminating the need for migration or delegation.159

Orthogonal to our NUMASK approach, in [27, 25] partitioning techniques have been used160

for targeting the hardware organization of NUMA architectures to improve the performance161

of array representations [27] and in-memory transaction processing [25].162

3 Terminology, NUMA & Linked Data Structures163

In NUMA, each (multicore) CPU is physically connected to a partition of the whole memory164

available in the system, called a NUMA zone. A hardware interconnection exists between165

NUMA zones (the NUMA interconnection). The hardware provides applications (including166

the OS) with the abstraction of a single consistent global memory address space; therefore,167

threads can access the entire memory range in a manner that is oblivious to the NUMA zone168

in which each virtual address resides. However, this transparency comes with performance169

costs associated with having an interconnection between NUMA zones.170

This interconnection has limited bandwidth, is slow to traverse, and saturates when171

many threads attempt to use it. Thus, if a thread executing on one CPU accesses a memory172

location stored in a NUMA zone physically connected with another CPU (called a remote173

NUMA zone hereafter), it incurs a latency that is significantly higher than the latency needed174

to access a memory location in the NUMA zone connected with the CPU where the thread175

executes (called local NUMA zone hereafter). In short, we use the term NUMA-local memory176

when the memory is in the local NUMA zone and the term NUMA-remote memory otherwise.177

Linked data structures are particularly affected by the memory latency variation intro-178



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:5

duced by NUMA. This is because traversing the data structure through pointers can easily179

lead threads to access memory locations physically maintained in remote NUMA zones.180

NUMA-aware memory allocation (e.g., libnuma [1], which is supported by most Operating181

System distributions) cannot eliminate this problem because even if threads allocate memory182

in their local NUMA zone, they might still need to traverse many other nodes to accomplish183

their operation, and these nodes might be added by threads running on remote NUMA zones.184

4 NUMASK: A Concurrent Skip List Designed for NUMA185

In this section we illustrate the design of NUMASK. In order to retain decades of high186

performance skip list results, NUMASK deploys a modular design that re-uses the fundamental187

operations of an existing concurrent skip-list and wraps these operations around a NUMA-188

aware architecture. The result is a data structure whose performance improves upon the189

selected concurrent skip list implementation when deployed on NUMA architectures. Another190

benefit of our modular design is that the correctness of the resulting NUMA-aware skip list191

is easy to prove since the wrapping architecture does not modify the core operations of the192

selected concurrent skip list implementation, which is assumed to be correct.193

In the rest of the paper we will use the term base skip list to indicate an implementation194

of a skip list that is wrapped (and improved) by the NUMASK architecture. The base skip195

list is a concurrent skip list whose API are insert, remove, and contains operations, with196

their default signatures [20]. The only requirement we add to this concurrent skip list is that197

bookkeeping operations (e.g., updating the searching layers and physical removal of logically198

deleted nodes) are decoupled from the critical path of the data structure operations (i.e.,199

insert/remove/contains) and executed lazily by a helper thread. It is worth noting that the200

features we require in the base skip list have been successfully deployed in many existing data201

structure implementations [18, 7, 12] and do not diminish the applicability of our proposal.202

In this paper we use Crain et al.’s No Hotspot skip list [8] as the base skip list because it203

defines a helper thread responsible for updating the skip list, and it is one of the state-of-the-204

art concurrent skip list implementations (as studied in [17]). For completeness, it is worth205

mentioning that No Hotspot, and thus our NUMASK skip list implementation, is lock-free.206

All skip list implementations share one key observation that motivates our design: elements207

in the data structure, representing the abstract state of the skip list, are reached through an208

index layer. This index layer is composed of metadata that does not belong to the abstract209

state of the data structure, and which is used to improve performance by minimizing the210

number of traversed nodes. Leveraging the above observation, we can split the memory space211

used by a skip list into a data layer, which stores the abstract state of the data structure,212

and an index layer, which includes the metadata exploited to reach the data layer. Figure 1a213

illustrates this separation.214

Managing the data layer and index layer independently is the crucial intuition behind the215

NUMASK design, for it exploits the different consistency requirements they have to improve216

performance in NUMA architectures. None of the existing designs of NUMA-aware data217

structures, when applied to skip lists (e.g., [6]), accounts for such separation.218

In a nutshell, in order to improve performance in NUMA architectures, the primary219

design choice of NUMASK is to create as many index layers as the number of NUMA220

zones in the system. These index layers are not updated immediately after successful221

insert/remove operations. Instead, they will be updated independently to avoid (unnecessary)222

synchronization and traffic on the NUMA interconnection. The ultimate goal of having223

NUMA-local index layers is to let operations on the data structure only access NUMA-local224

DISC 2018



18:6 NUMASK: High Performance Scalable Skip List for NUMA

(a) Skip list. (b) NUMASK.

Figure 1 Separation of layers in base skip list Vs. NUMASK. In 1b, the Intermediate layer has
not been updated with key 7 yet.

memory before reaching the data layer. Once there, the (probabilistic) logarithmic complexity225

of the skip list allows for the traversal of only few nodes in the data layer before finalizing226

the operation. We empirically demonstrate that traversing these few nodes (possibly NUMA-227

remote) does not have a significant impact on performance. NUMASK accomplishes the228

above goal by deploying the following design around a base skip list.229

4.1 Per-NUMA zone index layers230

In skip lists, most of the traversed nodes exist in the index layer; therefore, creating as many231

index layers as the number of NUMA zones allows application threads to perform mostly232

NUMA-local accesses. Given that the base skip list defers updates to the index layer to a233

helper thread, having multiple independent indexing layers entails the need of deploying the234

same amount of helper threads (one per NUMA zone) responsible for their management.235

Consequently, helper threads will also access NUMA-local memory.236

4.2 Per-NUMA zone intermediate layers237

Decisions on how to update the index layer usually depend upon the current composition of238

the data layer. That is why the aforementioned per-NUMA zone helper threads, responsible239

for updating each instance of the index layers, would have to traverse the data layer nodes in240

order to decide whether to apply certain modifications (e.g., increasing or lowering a level241

of a certain node in the data layer) or to leave the index layer instance unaltered. Since242

the traversed data layer nodes are not necessarily NUMA-local, this can produce excessive243

NUMA-remote accesses and generate significant traffic on the NUMA interconnection, which244

is the main source of performance degradation in NUMA.245

Because in NUMASK we aim at eliminating any NUMA-remote accesses while updating246

the index layer instances, we create a NUMA-local view of the data layer, which we name247

the intermediate layer. Creating multiple intermediate layers, one per index layer instance,248

allows helper threads to fully operate on NUMA-local memory. Logically, the intermediate249

layer is placed in between the index layer and the data layer. With respect to the index250

layer, the intermediate layer has the same goal as the base skip list data layer, meaning it251

serves as a knowledge base for the helper thread(s) to update the index layer instance(s).252

The peculiarity of the intermediate layer is that it need not be an exact replica of the253

data layer (e.g., it is enough to be eventually synchronized with the data layer). In fact, any254

inaccuracy in an index layer instance, which could happen due to a temporarily out-dated255

intermediate layer, affects only the skip list performance and not its correctness. This is the256

same rationale that led previous skip list designs [8, 12, 17] to lazily update the index layer.257

Relaxed constraints on the intermediate layer composition enable its NUMA distribution.258



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:7

Figure 2 NUMASK deployed on a server with four sockets and four NUMA zones. The four
instances of the index and intermediate layer are independent, and the data layer is scattered across
available memory. The abstract state of the data structure contains the following keys: {0;2;5;7;9}.

In Figure 1b we show a simple example of NUMASK. Here the abstract state of the skip259

list is the same as Figure 1a; however, the intermediate layer has not been updated with260

the element with key 7. This is a plausible case in our design, meaning that the insert(7)261

operation result has not yet been propagated to the intermediate layer. We can easily see262

that the index layer remains the same as the skip list in Figure 1a. The modifications made263

by insert(7) will eventually be propagated to the intermediate layer using a technique (shown264

below) that does not increase the duration of the actual data structure operation.265

4.3 Propagation of Data Layer Modifications.266

The intermediate layer instances need to be periodically updated to reflect the content of267

the data layer. A naïve way to do this follows: at the end of each update operation (i.e.,268

insert/delete), necessary information is stored in an intermediary data structure (e.g., a269

queue), and each per-NUMA helper thread later loads this information and updates its local270

intermediate layer. However, this naïve approach leads to one major drawback: it requires271

synchronization and memory allocation overhead on the data structure’s critical path.272

To remove this overhead from the application threads, NUMASK assigns a new helper273

thread the task of updating the intermediate layer instances. This thread operates at274

predefined intervals and iterates over the data layer. Every time it finds a node that has been275

modified (i.e., inserted or logically removed), it propagates this modification to all instances.276

It is worth noting that this new helper thread does generate traffic on the NUMA-277

interconnection. However, the impact of this traffic on the data structure performance is278

minimal given that it does not operate frequently. Also, thanks to our optimizations in the279

index layers, the number of NUMA-remote accesses is already low (<15% in our experiments).280

Thus, the NUMA-interconnection is expected not to be saturated; therefore, this helper281

thread will not cause significant delay.282

4.4 Example of NUMASK deployment283

In Figure 2 we deployed NUMASK on a server with 4 processor sockets and 4 NUMA zones.284

In the example, the abstract state of the skip list is {0;2;5;7;9}. By looking at the data layer285

DISC 2018



18:8 NUMASK: High Performance Scalable Skip List for NUMA

we assume that the elements 0 and 2 have been inserted by an application thread executing286

on CPU1, element 5 by a thread on CPU3, and so on. Each NUMA zone has its own287

intermediate and index layer instance. The composition of the different intermediate layer288

instances is different because the data layer modifications are not propagated at the same289

time to all intermediate later instances. For example, in the figure the element 6 has been290

removed, but the intermediate layer of NUMA zone 3 still has not applied this modification.291

Also, in the figure the four index layer instances differ from each other since helper threads292

work independently and do not proceed synchronously.293

4.5 Design Trade-offs294

The design of NUMASK presents different trade-offs with respect to the space and time295

needed to handle its index and intermediate layers, including tuning the configuration296

associated with the deployed helper threads. These trade-offs are briefly discussed below.297

NUMASK introduces space overhead due to the presence of multiple instances of both298

index layer and intermediate layer. This overhead is proportional to the number of NUMA299

zones in the system; however it does not increase with the number of application threads.300

Moreover, as we will detail later, the synchronization overhead to maintain (i.e., traverse301

and update) this extra space is limited. Finally, it is important to note that, in cases where302

space utilization is crucial, some optimization can be added to NUMASK to control such303

utilization. For example, a probabilistic policy can be added to the data layer propagation304

process. This policy might aim at selecting only some operation made by application threads,305

rather than all, to be propagated to the different intermediate layer instances.306

Another trade off involves the helper threads’ frequency of operation. Tuning the backoff307

time after each iteration of the helper threads might affect the overall performance of308

NUMASK. One viable solution towards a configuration that is effective in multiple scenarios309

is to use an adaptive technique, similar to the one adopted in [18], in which the application310

workload is monitored and backoff time is adjusted accordingly.311

5 NUMASK: Protocol Details312

In this section we show the algorithmic details of NUMASK. The pseudo-code describing313

NUMASK is reported in Algorithms 2 and 3. To clarify the presentation, we abstract a base314

skip list in Algorithm 1. By leveraging this abstraction, we can avoid listing the details of core315

operations on the skip list (i.e., traversal, modification to data and index layer, logical and316

physical removal of elements) and focus on our NUMA-aware modifications. Algorithms 2317

and 3 include calls to procedures defined in Algorithm 1. All the low-level details of our318

implementation are public and available in Synchrobench.319

Algorithm 1 abstracts the base skip list as two procedures: Base-Operation and320

Base-Helper. Base-Operation is the handler for the three different types of data structure321

operations, namely insert, remove, and contains. Each of these operations is split into322

Base-Traversal and Base-DoOperation sub-procedures. The former traverses the index323

layer and returns a pointer to some data layer node where the operation should act. The324

latter works entirely on the data layer and applies the invoked operation (e.g., if the operation325

is an insert, the node is physically inserted in the data layer). Base-Helper periodically calls326

Base-UpdateIndex for updating the skip list index layer and performing physical removals.327

As mentioned before, in our experiments we selected No Hotspot as the underlying328

base skip list implementation. The details of how No Hotspot implements Base-Traversal,329

Base-DoOperation, and Base-UpdateIndex can be found in [8].330



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:9

Algorithm 1 Abstract Base Skip List
1: Global Variable: indexSen . indexSen = sentinel node of index layer
2: procedure Base-Operation(Type t, Element el) . t = Insert/Remove/Contains
3: Node n = Base-Traversal(indexSen,el.key); . n is the node with the closest key value less than or equal to

the desired node
4: boolean res = Base-DoOperation(t,el,n);
5: return res;
6: end procedure

7: procedure Base-Helper(Node s)
8: while true do
9: Base-UpdateIndex(s); . This procedure updates the index layer starting from the sentinel node s

10: . In the base skip list, s is the sentinel node of the lowest level of the skip list
11: end while
12: end procedure

5.1 NUMASK: Data Structure Operations331

NUMASK’s Insert, Remove, and Contains operations (Algorithm 2) can be summarized in332

the following steps: i) each operation traverses the local index layer instance until it retrieves333

a pointer to a node in the local intermediate layer; ii) this intermediate layer node is used334

as an indirection to reach a pointer to a data layer node; iii) this pointer is then used to335

perform the actual operation on the data layer. Importantly, the operations terminate right336

after updating the data layer, since all further updates in both intermediate and index layers337

are delegated to the helper threads (as detailed in the next two subsections).338

Algorithm 2 NUMASK: Skip List Operations
1: Global Variable:
2: Node indexSents[MaxNumaZones] . Array of index layer sentinel nodes, one per NUMA zone
3: Node interSents[MaxNumaZones] . Array of intermediate layer sentinel nodes, one per NUMA zone
4: Node dataSent . data layer sentinel node
5: Queue update-queues[MaxNumaZones] . Queue utilized for updating the MaxNumaZones intermediate layers

6: Node: a struct with fields
7: next . Pointer to next node in the list
8: down . Pointer to the node in the level below
9: status . Up to date = 0, recently added = 1, recently removed = 2

10: level . The height of the tallest tower in the index layer
11: deleted . Indicates if node is logically deleted

12: procedure NUMASK_Operation(Type t, Element el)
13: Node intermediate_node = NUMASK_Traversal(getCurrentNUMAZone(), el.key);
14: Node data_node = intermediate_node.down;
15: boolean result = NUMASK_DoOperation(t, el, data_node);
16: return result;
17: end procedure

18: procedure NUMASK_Traversal(int zone, Key k) . This procedure traverses the index layer associated
with the local NUMA zone and returns a node in the intermediate layer

19: Node n = Base-Traversal(indexSents[zone], k);
20: return n
21: end procedure

22: procedure NUMASK_DoOperation(Type t, Element el, Node n)
23: boolean result = Base-DoOperation(t, el, n); . If successful, DoOperation sets the altered node’s status
24: return result;
25: end procedure

The details of Algorithm 2 are as follows. In typical skip lists, index layer traversal starts339

from a known sentinel node. In NUMASK, each NUMA zone has its own index layer instance340

and therefore its own sentinel node as well (Algorithm 2:2). When a NUMASK traversal is341

invoked (Algorithm 2:18), the local thread starts from the sentinel node of the local NUMA342

zone. From this point, all memory accesses of NUMASK_Traversal will be NUMA-local. The343

traversal operates similar to that of the base skip list: it moves to a node on its right in the344

same level (using the next field) as long as its key is less than or equal to the target key345

DISC 2018



18:10 NUMASK: High Performance Scalable Skip List for NUMA

(say k), and it moves to the next lower index level (using the down field) otherwise. If there346

is no lower index level to traverse, the traversal exits by returning the pointer to the node347

in the intermediate layer. Each node in the intermediate layer has a (down) pointer to its348

respective data layer node, from which Base-DoOperation can begin.349

Base-DoOperation operates similar to the base skip list: The data layer is traversed350

from the pointer reached by the intermediate layer node until either a node with a greater351

key is found or the list ends. After that, the operation completes based on its type. If it352

is a contains operation, it checks whether the node’s key matches k or not. The insert353

and remove operations use Compare-And-Swap for non-blocking updates (details of how No354

Hotspot, and thus NUMASK, accomplishes that can be found in [8]).355

An important task assigned to NUMASK_DoOperation is to update the node’s status356

field upon a successful write operation. Setting this field to 1 (respectively 2) indicates to357

helper threads that the node is newly inserted (respectively removed), and this insertion358

(respectively removal) is not yet propagated to the intermediate and index layers. To simplify359

the pseudo-code, we exclude this assignment of the status field, replacing it with a comment360

in Algorithm 2:23.361

5.2 Data-Layer-Helper362

In NUMASK, we create a single Data-Layer-Helper thread that periodically traverses the363

data layer in order to accomplish two objectives: i) it is responsible for feeding the different364

intermediate layer instances with the results of successful update operations on the data365

layer, and ii) it attempts to physically remove any logically-deleted nodes of the data layer.366

In order to accomplish i), the NUMASK design provides each intermediate layer instance367

with a single-producer/single-consumer queue (Algorithm 2: 5). As a consequence of this368

decision, there are as many queues as NUMA zones in NUMASK. The producer for all the369

queues is the same: the Data-Layer-Helper thread; while each queue has a different consumer:370

the Per-NUMA-Helper thread running in the queue’s NUMA zone (detailed in the next371

subsection). We implemented these queues similar to the Vyukov SPSC queue [30].372

The above queues are used to synchronize the data layer with intermediate layers as373

follows: when the Data-Layer-Helper thread traverses the data layer, each node’s status field374

is checked to see if it is nonzero (which means it was recently inserted/removed); if so, it is375

added to the queue of each NUMA zone (Algorithm 3: 6) and its status field is reset to zero376

(to indicate that it is now up to date).377

In order to accomplish ii), the algorithm checks each node to see if it is logically deleted.378

If so, then it becomes a candidate to be physically removed. As in No Hotspot (as well as379

other concurrent skip lists), unlinking a node from the data layer can be done only if no380

tower above it is present in the index layer. However, since NUMASK deploys multiple index381

layer instances, the condition for physically removing one node is that no tower above it382

is present in any index layer instance. Verifying this condition is simple: each node in the383

data layer has a field named level. If the traversed node’s level equals zero and it is logically384

deleted (Algorithm 3: 9), then the Data-Layer-Helper will proceed with its physical removal.385

In the next subsection we discuss how to update this level field.386

By offloading the above two operations to a dedicated thread, the critical path of the387

application (NUMASK_Operation) is minimized. Note that populating the queues, which388

is required to update the intermediate layers (and therefore the index layers), entails an389

additional memory allocation overhead. This memory allocation could have been a dominant390

cost in the operation’s critical path if we did not offload it to a separate helper thread.391

A positive side effect of our dedicated Data-Layer-Helper thread is that while the thread392



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:11

Algorithm 3 NUMASK: Updating Metadata
1: procedure Data-Layer-Helper . This procedure propagates recently altered nodes to intermediate layers
2: while true do
3: Node curr = dataSent.next;
4: while curr != NULL do
5: if curr.status != 0 then
6: Add-Job-To-Queues(curr);
7: curr.status = 0;
8: else
9: if curr.level == 0 && curr.deleted then . If curr is logically deleted and there is no tower

above it in any index layer
10: remove(curr);
11: end if
12: end if
13: curr = curr.next;
14: end while
15: end while
16: end procedure

17: procedure Per-NUMA-Helper(int local_zone)
18: while true do
19: Update-Intermediate-Layer(local_zone)
20: Base-UpdateIndex(interSents[local_zone]); . UpdateIndex is assumed to update the level field of

nodes in the data and intermediate layer, when needed
21: end while
22: end procedure

23: procedure Add-Job-To-Queues(Node node)
24: for i = 0 to MaxNumaZones do
25: update-queues[i].push(node);
26: end for
27: end procedure

28: procedure Update-Intermediate-Layer(int z) . This function updates the intermediate layer of zone z
29: Node sentinel = indexSents[z];
30: while update-queues[z] is not empty do
31: Node updatedNode = update-queue[z].pop();
32: Node intermediate_node = NUMASK_Traversal(sentinel, updatedNode.key);
33: if updatedNode.status == 1 then
34: Node local-node = NUMA_alloc(updatedNode); . NUMA-aware memory allocator
35: NUMASK_Operation(INSERT, local-node, intermediate_node);
36: else
37: NUMASK_Operation(REMOVE, updatedNode, intermediate_node);
38: end if
39: end while
40: end procedure

traverses the data layer, it reloads the cache of the processor on which it is executing, which393

increases cache hits for application threads that access the data layer. We exploit this idea394

further by rotating iterations of the Data-Layer-Helper thread between different NUMA395

zones. This way, caches in different NUMA zones (especially the L3 caches) are evenly396

refreshed. This process of refreshing caches is particularly effective when the data structure397

is not large; otherwise the number of elements evicted from cache might be large.398

5.3 Per-NUMA-Helper399

The role of Per-NUMA-Helper is to keep the index and intermediate layer of one NUMA400

zone updated. Consequently, NUMASK deploys one Per-NUMA-Helper thread per NUMA401

zone. Each iteration of the Per-NUMA-Helper thread performs two steps. First, it updates402

the local intermediate layer using the information contained in the queue of its NUMA zone403

(Algorithm 3:28). Second, it applies any needed modification to the local index layer.404

The Update-Intermediate-Layer procedure (Algorithm 3:28) is responsible for achieving405

the first step. In this procedure, the Per-NUMA-Helper thread fetches jobs from the queue in406

the local NUMA zone and applies them to the local intermediate layer. To do that, Per-NUMA-407

Helper calls NUMASK-Traversal to reach the interested location of the local intermediate layer408

DISC 2018



18:12 NUMASK: High Performance Scalable Skip List for NUMA

in logarithmic time. After that, the intermediate layer instance is updated by simply calling409

NUMASK-Operation using the intermediate node pointer returned by NUMASK-Traversal.410

A critical low-level operation that happens during the Update-Intermediate-Layer411

procedure is the memory allocation of new nodes to be added to the local intermediate412

layer (Algorithm 3:34). It is required for all memory allocations by each Per-NUMA-Helper413

thread to be NUMA-local. Otherwise subsequent invocations of NUMASK-Traversal are414

not guaranteed to access entirely NUMA-local memory. In this regard, we tested multiple415

thread-local [2, 13] and NUMA-aware [1] allocators, but their overhead slowed performance.416

To deal with this problem, we developed a simple NUMA-aware memory allocator to serve417

memory allocation requests from Per-NUMA-Helper (see Section 6 for more details).418

Once the local intermediate layer is updated, the procedure Base-UpdateIndex is called419

to update the index layer. In our implementation, inspired by No Hotspot, this procedure420

handles the raising and lowering of towers based on the composition of the intermediate layer,421

and it also handles removing any logically deleted nodes. First, the helper thread iterates422

over the intermediate layer, physically removing any nodes marked for deletion without any423

towers above (similar to what is done to the data layer nodes in Data-Layer-Helper). After424

that and if necessary, towers are raised or lowered to maintain the logarithmic complexity425

of the index layer traversals. When a tower is entirely removed in an index layer instance,426

the Per-NUMA-Helper thread accesses the linked node to the data layer and decrements its427

level field. Although changing the status field in such cases entails a NUMA-remote access,428

it is not a frequent operation, and thus it has a negligible impact on performance.429

5.4 Correctness Arguments430

One of the advantages of NUMASK’s design is its ability to reuse already-implemented basic431

operations to manipulate the data (and not metadata) of the data structure. None of our432

modifications needs to address how to insert or remove a node in the skip list data layer.433

Even the basic skip list traversal need not be modified.434

Such a design makes it possible to integrate the NUMASK approach into other skip list435

implementations without affecting the overall correctness. This is noticeable by looking at436

how in Algorithms 2 and 3 we invoke procedures from Algorithm 1. In summary, if the base437

skip list is correct, then NUMASK will preserve such correctness.438

6 NUMASK Optimization439

Custom NUMA-aware Memory Allocator. NUMASK requires a mechanism to allocate memory440

in a thread’s local NUMA zone. Without this, the proposed architecture would not be be-441

neficial, as application and helper threads would frequently access NUMA-remote memory.442

Existing NUMA-aware memory allocators (e.g., libnuma) repeatedly interact with the op-443

erating system in order to retrieve NUMA-local memory. These interactions introduce a444

noticeable latency. After trying other memory allocators (e.g., [2, 13]), we decided to address445

our problem by developing a custom linear allocator to support the NUMASK design. To the446

best of our knowledge, this is the fastest design for memory allocation that fits our software447

architecture; it is simple yet effective.448

Our NUMA allocator is used to serve allocation requests produced by Per-NUMA-Helper,449

therefore we deploy as many instances of our allocator as the number of Per-NUMA-Helper450

threads. Importantly, each of these allocator instances serves only one Per-NUMA-Helper451

thread; therefore, each allocator instance can be sequential (not concurrent).452



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:13

(a) Initial allocator layout. (b) Layout after half cache line
requested.

(c) Layout after whole cache
line requested.

Figure 3 Cache alignment scheme of our allocator. Grey blocks are free space; small white blocks
are half cache line; large white blocks are whole cache line.

A linear (or monotonic) allocator consists of a fixed-size memory buffer allocated upon453

initialization and an internal offset to the beginning of the buffer’s free space. Allocation454

requests increment the buffer offset by the size of the request and return the old value; thus455

requests are served in constant time without overhead, making the allocator fast.456

Our allocator consists of a basic linear allocator plus three additions to fit our needs. The457

first addition is to allow the allocator to allocate new buffers (linear allocators usually do458

not reallocate memory). The second addition is to allocate the buffer in a specific NUMA459

zone, so that all the returned memory addresses reside in the same NUMA zone. With that,460

intermediate and index layers are formed of NUMA-local memory.461

The final addition to our allocator deals with request alignment. Since the allocator is462

only used to create index and intermediate nodes, and their sizes are less than and greater463

than a half cache line, respectively, the requests are automatically aligned to either a half or464

whole cache line. The allocator keeps track of the previous request’s alignment internally465

and aligns the current request based on the previous alignment and the size of the current466

request. This internal bookkeeping allows the allocator to fit two index nodes in a cache line,467

which in turn results in faster index traversal, for two nodes in the same cache line will likely468

be near each other in the index layer, thus reducing necessary memory accesses.469

Figure 3 details how the allocator aligns requests in different scenarios. The example470

begins in Figure 3a; the previous two requests resulted in a whole cache-line alignment and471

a half cache-line alignment. Depending on the next request, the allocator could result in472

two separate layouts. If the next request is an index node (size less than half a cache-line),473

the allocator can squeeze it in the half cache-line free space. Figure 3b shows the result in474

this case. However, if an intermediate node is the next memory allocation, the allocator will475

move the offset to the beginning of the next cache-line to keep the intermediate node from476

spilling over two cache lines. Figure 3c depicts this. Note that the free space skipped over in477

Figure 3c will not be used.478

Avoiding Synchronization When Updating Intermediate Layer. In Section 5.3 we discussed479

how each Per-NUMA-Helper thread updates the local intermediate layer. In the pseudo-code480

we do that by invoking NUMASK-Operation, which uses synchronization primitives, since481

it is the same function used by application threads to operate on the data layer. This482

task can be changed to let Per-NUMA-Helper modify the intermediate layer without any483

atomic operations as follows. In order to make updates on an intermediate layer instance484

synchronization-free, we need to disallow NUMASK_Operation from using the intermediate485

layer to access the data layer (see Algorithm 2:14). To do so, in our implementation we store486

the pointer to the data layer directly in the index nodes so that application threads never487

need to access the intermediate layer.488

7 Evaluation489

We implemented NUMASK in C++, and integrated it into Synchrobench [17], a bench-490

mark suite for concurrent data structures. In addition to providing a common software491

DISC 2018



18:14 NUMASK: High Performance Scalable Skip List for NUMA

Figure 4 Speedup NUMASK over No Hotspot varying data structure size.

architecture to configure and test different data structure implementations, Synchrobench492

already implements many state-of-the-art high performance solutions that we used to compare493

against NUMASK. Specifically, we selected three concurrent skip list implementations: No494

Hotspot [8], Fraser [15], and Rotating skip list [12]. We also included a sequential skip list495

implementation [17]. As specified earlier in the paper, NUMASK has been built using No496

Hotspot as a base skip list implementation for two reasons: it is among the fastest concurrent497

skip lists of which we are aware, and it alleviates contention by deferring index layer updates.498

Our testbed consists of a server with 4 Intel Xeon Platinum 8160 processors (2.1GHz,499

24/48 cores/threads per CPU). The machine provides 192 hardware threads. There are500

4 sockets hosting the 4 processors, via 4 NUMA zones (one per socket), and 768 GB of501

memory. In our experiments we ran up to 160 application threads (the actual number of502

executing threads is higher because of the helper threads used by each competitor) to leave503

enough resources to the operating system to execute without creating bottlenecks. In our504

experiments we distribute application threads evenly across NUMA zones.505

The workloads we use to test competitors perform insert/remove/contains operations.506

Note that in order to keep the size of the data structure consistent, during removal the507

application attempts to pick elements that have previously been inserted successfully. Each508

test has a warm-up phase where the skip list is populated and the index is built. This phase509

is also used to fill out L1/L2/L3 caches. After that, the application runs for 10 seconds while510

collecting statistics. In the experiments we use a range of key elements that is twice the data511

structure size; and all elements have integer keys. All results are averages of five test runs.512

Before showing the throughput of all competitors, we report two plots that summarize the513

advantages of NUMASK over the base skip list, which is No Hotspot in our case. Figure 4514

demonstrates the speedup of NUMASK over No Hotspot by varying the initial size of the515

data structure, in the range 64 to 1M elements. To improve clarity, a line is drawn to show516

when speedup equals 1. We test different percentages of update operations and we record517

the value for the best performance among all thread ranges. Although for clarity we cannot518

include the number of threads corresponding to each data point in the plot, it is worth noting519

that, in our evaluation settings, NUMASK is most effective when the number of threads520

exceeds 64, as it will be clear analyzing Figure 6. As a result, for all data points in Figure 4,521

the number of application threads is always in the range of 64 to 160.522

NUMASK’s speedup grows significantly when the data structure size decreases. This523

is mostly due to its capability of exploiting NUMA-local accesses and leveraging cache524



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:15

locality. In fact, with sizes less than 10k elements, most of the data structure will likely525

fit in processors’ caches, but the presence of updates forces frequent cache refreshing. This526

refreshing requires loading memory locations from main memory. In No Hotspot, this is527

likely to be in a remote NUMA zone given that the machine has 4 NUMA zones. However,528

NUMASK was designed to keep most of the needed memory locations in the local NUMA529

zone. This is also confirmed by the result using 0% updates; here the speed up is significantly530

less than in write-intensive workloads because both competitors can benefit from cache531

locality. Considering 50% updates and 128 elements NUMASK is 11x faster than No Hotspot;532

and at 100K elements NUMASK is 27% faster. Interestingly, the plots in Figures 6g-6i,533

meaning when the data structure size is set at 100k, show how NUMASK’s performance does534

not degrade with respect to competitors. In these cases, the most dominant cost for all is535

poor cache locality, which brings down performance.536

Figure 5 NUMA-local accesses in NUMASK and No Hotspot using {4,128} application threads.

Figure 5 shows the key reason for the performance improvement of NUMASK: its NUMA-537

local accesses. To collect statistics, we monitored memory accesses performed by application538

threads and contrasted the application thread’s local NUMA zone with the NUMA zone in539

which the memory location resides. Here the initial size of the data structure is 100K, and540

we configured the system to run with 4 and 128 application threads. No Hotspot hovers541

around 25%, which is the immediate consequence of having uniform distribution of data542

structure accesses and 4 NUMA zones; NUMASK is around 90% because of its NUMA-aware543

design. An observation that is not shown in the plots is that the percentage of NUMA-local544

accesses for the Per-NUMA-Helper threads is consistently slightly lower than 100% (recall545

that each Per-NUMA-Helper can occasionally access some NUMA-remote location as detailed546

in Section 5.3).547

Figure 6 shows the throughput of NUMASK against the Fraser, Rotating, and No Hotspot548

skip lists by varying the number of application threads, data structure size, and percentage of549

update operations. Throughput is measured in millions of operations successfully completed550

per second. A specially relevant case is the one where the data structure is 1K elements.551

In the read-intensive scenario, all competitors scale well except for Fraser, with NUMASK552

demonstrating the highest performance. With 50% and 80% of updates, all competitors553

stop scaling beyond 64 threads while NUMASK continues scaling, hitting the remarkable554

performance of 300 million operations per second with 50% updates. In this configuration,555

at 160 threads NUMASK outperforms rotating skiplist and No Hotspot by 2x.556

DISC 2018



18:16 NUMASK: High Performance Scalable Skip List for NUMA

(a) 128;20% (b) 128;50% (c) 128;80%

(d) 1024;20% (e) 1024;50% (f) 1024;80%

(g) 100k;20% (h) 100k;50% (i) 100k;80%

Figure 6 Throughput of NUMASK against other skip list implementations varying data structure
size and the percentage of update operations. Throughput is in Millions operations per second.

Reducing the data structure size improves the gap between NUMASK and the other557

competitors. This is reasonable since our NUMA design avoids synchronization across NUMA558

zones, which would generate many NUMA-remote accesses.559

At 100k element size, the gaps among competitors is reduced. Sill, NUMASK is the560

fastest at 50% updates and 160 threads by gaining 10% over Rotating and 27% over No561

Hotspot. As mentioned before and confirmed by the analysis of the cache hits/misses, the562

dominant cost here is repeatedly loading new elements into the cache. This cost obfuscates563

the effort in improving performance made by NUMASK’s design. No Hotspot’s performance564

evaluation also discusses similar findings with large data structure sizes.565

8 Conclusion566

In this paper we presented NUMASK, a high-performance concurrent skip list that uses567

a combination of distributed design and eventual synchronization to improve performance568

in NUMA architectures. Our evaluation study shows unquestionably high throughput and569

remarkable speedups: up to 16x in write-intensive workloads and in the presence of contention.570



H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:17

References571

1 numa(3) Linux Programmer’s Manual, second edition, December 2007. https://linux.572

die.net/man/3/numa.573

2 Emery D. Berger, Kathryn S. McKinley, Robert D. Blumofe, and Paul R. Wilson. Hoard:574

A scalable memory allocator for multithreaded applications. In Larry Rudolph and Anoop575

Gupta, editors, ASPLOS-IX Proceedings of the 9th International Conference on Archi-576

tectural Support for Programming Languages and Operating Systems, Cambridge, MA,577

USA, November 12-15, 2000., pages 117–128. ACM Press, 2000. Source code avail-578

able at https://github.com/emeryberger/Hoard. URL: http://doi.acm.org/10.1145/579

356989.357000, doi:10.1145/356989.357000.580

3 Sergey Blagodurov, Sergey Zhuravlev, Alexandra Fedorova, and Ali Kamali. A case for581

numa-aware contention management on multicore systems. In Proceedings of the 19th582

International Conference on Parallel Architectures and Compilation Techniques, PACT ’10,583

pages 557–558, New York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/584

1854273.1854350, doi:10.1145/1854273.1854350.585

4 Trevor Brown, Alex Kogan, Yossi Lev, and Victor Luchangco. Investigating the perform-586

ance of hardware transactions on a multi-socket machine. In Christian Scheideler and Seth587

Gilbert, editors, Proceedings of the 28th ACM Symposium on Parallelism in Algorithms588

and Architectures, SPAA 2016, Asilomar State Beach/Pacific Grove, CA, USA, July 11-13,589

2016, pages 121–132. ACM, 2016. URL: http://doi.acm.org/10.1145/2935764.2935796,590

doi:10.1145/2935764.2935796.591

5 Irina Calciu, Dave Dice, Yossi Lev, Victor Luchangco, Virendra J. Marathe, and Nir Shavit.592

NUMA-aware Reader-writer Locks. In PPoPP ’13, 2013.593

6 Irina Calciu, Siddhartha Sen, Mahesh Balakrishnan, and Marcos K. Aguilera. Black-box594

concurrent data structures for NUMA architectures. In Yunji Chen, Olivier Temam, and595

John Carter, editors, Proceedings of the Twenty-Second International Conference on Ar-596

chitectural Support for Programming Languages and Operating Systems, ASPLOS 2017,597

Xi’an, China, April 8-12, 2017, pages 207–221. ACM, 2017. URL: http://doi.acm.org/598

10.1145/3037697.3037721, doi:10.1145/3037697.3037721.599

7 Tyler Crain, Vincent Gramoli, and Michel Raynal. A speculation-friendly binary search600

tree. In J. Ramanujam and P. Sadayappan, editors, Proceedings of the 17th ACM SIG-601

PLAN Symposium on Principles and Practice of Parallel Programming, PPOPP 2012,602

New Orleans, LA, USA, February 25-29, 2012, pages 161–170. ACM, 2012. URL:603

http://doi.acm.org/10.1145/2145816.2145837, doi:10.1145/2145816.2145837.604

8 Tyler Crain, Vincent Gramoli, and Michel Raynal. No hot spot non-blocking skip list. In605

IEEE 33rd International Conference on Distributed Computing Systems, ICDCS 2013, 8-606

11 July, 2013, Philadelphia, Pennsylvania, USA, pages 196–205. IEEE Computer Society,607

2013. URL: https://doi.org/10.1109/ICDCS.2013.42, doi:10.1109/ICDCS.2013.42.608

9 Mohammad Dashti, Alexandra Fedorova, Justin R. Funston, Fabien Gaud, Renaud609

Lachaize, Baptiste Lepers, Vivien Quéma, and Mark Roth. Traffic management: a hol-610

istic approach to memory placement on NUMA systems. In Vivek Sarkar and Rastislav611

Bodík, editors, Architectural Support for Programming Languages and Operating Systems,612

ASPLOS ’13, Houston, TX, USA - March 16 - 20, 2013, pages 381–394. ACM, 2013. URL:613

http://doi.acm.org/10.1145/2451116.2451157, doi:10.1145/2451116.2451157.614

10 Tudor David, Rachid Guerraoui, and Vasileios Trigonakis. Asynchronized concurrency:615

The secret to scaling concurrent search data structures. In Özcan Özturk, Kemal Ebcioglu,616

and Sandhya Dwarkadas, editors, Proceedings of the Twentieth International Conference617

on Architectural Support for Programming Languages and Operating Systems, ASPLOS ’15,618

Istanbul, Turkey, March 14-18, 2015, pages 631–644. ACM, 2015. URL: http://doi.acm.619

org/10.1145/2694344.2694359, doi:10.1145/2694344.2694359.620

DISC 2018

https://linux.die.net/man/3/numa
https://linux.die.net/man/3/numa
https://linux.die.net/man/3/numa
https://github.com/emeryberger/Hoard
http://doi.acm.org/10.1145/356989.357000
http://doi.acm.org/10.1145/356989.357000
http://doi.acm.org/10.1145/356989.357000
http://dx.doi.org/10.1145/356989.357000
http://doi.acm.org/10.1145/1854273.1854350
http://doi.acm.org/10.1145/1854273.1854350
http://doi.acm.org/10.1145/1854273.1854350
http://dx.doi.org/10.1145/1854273.1854350
http://doi.acm.org/10.1145/2935764.2935796
http://dx.doi.org/10.1145/2935764.2935796
http://doi.acm.org/10.1145/3037697.3037721
http://doi.acm.org/10.1145/3037697.3037721
http://doi.acm.org/10.1145/3037697.3037721
http://dx.doi.org/10.1145/3037697.3037721
http://doi.acm.org/10.1145/2145816.2145837
http://dx.doi.org/10.1145/2145816.2145837
https://doi.org/10.1109/ICDCS.2013.42
http://dx.doi.org/10.1109/ICDCS.2013.42
http://doi.acm.org/10.1145/2451116.2451157
http://dx.doi.org/10.1145/2451116.2451157
http://doi.acm.org/10.1145/2694344.2694359
http://doi.acm.org/10.1145/2694344.2694359
http://doi.acm.org/10.1145/2694344.2694359
http://dx.doi.org/10.1145/2694344.2694359


18:18 NUMASK: High Performance Scalable Skip List for NUMA

11 David Dice, Virendra J. Marathe, and Nir Shavit. Lock Cohorting: A General Technique621

for Designing NUMA Locks. In PPoPP ’12, 2012.622

12 Ian Dick, Alan Fekete, and Vincent Gramoli. A skip list for multicore. Concurrency and623

Computation: Practice and Experience, 29(4), 2017. URL: https://doi.org/10.1002/624

cpe.3876, doi:10.1002/cpe.3876.625

13 Jason Evans. jemalloc memory allocator. https://github.com/jemalloc/jemalloc.626

14 Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings of627

the Twenty-third Annual ACM Symposium on Principles of Distributed Computing, PODC628

’04, pages 50–59, New York, NY, USA, 2004. ACM. URL: http://doi.acm.org/10.1145/629

1011767.1011776, doi:10.1145/1011767.1011776.630

15 Keir Fraser. Practical lock-freedom. PhD thesis, University of Cambridge, September 2003.631

16 Fabien Gaud, Baptiste Lepers, Justin Funston, Mohammad Dashti, Alexandra Fedorova,632

Vivien Quéma, Renaud Lachaize, and Mark Roth. Challenges of memory management633

on modern numa systems. Commun. ACM, 58(12):59–66, November 2015. URL: http:634

//doi.acm.org/10.1145/2814328, doi:10.1145/2814328.635

17 Vincent Gramoli. More than you ever wanted to know about synchronization: syn-636

chrobench, measuring the impact of the synchronization on concurrent algorithms. In637

Albert Cohen and David Grove, editors, Proceedings of the 20th ACM SIGPLAN Sym-638

posium on Principles and Practice of Parallel Programming, PPoPP 2015, San Francisco,639

CA, USA, February 7-11, 2015, pages 1–10. ACM, 2015. URL: http://doi.acm.org/10.640

1145/2688500.2688501, doi:10.1145/2688500.2688501.641

18 Ahmed Hassan, Roberto Palmieri, and Binoy Ravindran. Transactional interference-less642

balanced tree. In Distributed Computing - 29th International Symposium, DISC 2015,643

Tokyo, Japan, October 7-9, 2015, Proceedings, pages 325–340, 2015.644

19 Danny Hendler, Itai Incze, Nir Shavit, and Moran Tzafrir. Flat combining and the645

synchronization-parallelism tradeoff. In Proceedings of the Twenty-second Annual ACM646

Symposium on Parallelism in Algorithms and Architectures, SPAA ’10, pages 355–364, New647

York, NY, USA, 2010. ACM. URL: http://doi.acm.org/10.1145/1810479.1810540,648

doi:10.1145/1810479.1810540.649

20 M. Herlihy and N. Shavit. The art of multiprocessor programming. Morgan Kaufmann,650

2008.651

21 Maurice Herlihy, Yossi Lev, Victor Luchangco, and Nir Shavit. A simple optimistic skiplist652

algorithm. In Structural Information and Communication Complexity, 14th International653

Colloquium, SIROCCO 2007, Castiglioncello, Italy, June 5-8, 2007, Proceedings, pages654

124–138, 2007.655

22 Christoph Lameter. Numa (non-uniform memory access): An overview. Queue, 11(7):40:40–656

40:51, July 2013. URL: http://doi.acm.org/10.1145/2508834.2513149, doi:10.1145/657

2508834.2513149.658

23 Baptiste Lepers, Vivien Quéma, and Alexandra Fedorova. Thread and memory place-659

ment on NUMA systems: Asymmetry matters. In Shan Lu and Erik Riedel, editors,660

2015 USENIX Annual Technical Conference, USENIX ATC ’15, July 8-10, Santa Clara,661

CA, USA, pages 277–289. USENIX Association, 2015. URL: https://www.usenix.org/662

conference/atc15/technical-session/presentation/lepers.663

24 Zoltan Majo and Thomas R. Gross. Memory management in numa multicore sys-664

tems: Trapped between cache contention and interconnect overhead. In Proceedings of665

the International Symposium on Memory Management, ISMM ’11, pages 11–20, New666

York, NY, USA, 2011. ACM. URL: http://doi.acm.org/10.1145/1993478.1993481,667

doi:10.1145/1993478.1993481.668

25 Mohamed Mohamedin, Roberto Palmieri, Sebastiano Peluso, and Binoy Ravindran. On669

designing numa-aware concurrency control for scalable transactional memory. In Rafael670

https://doi.org/10.1002/cpe.3876
https://doi.org/10.1002/cpe.3876
https://doi.org/10.1002/cpe.3876
http://dx.doi.org/10.1002/cpe.3876
https://github.com/jemalloc/jemalloc
http://doi.acm.org/10.1145/1011767.1011776
http://doi.acm.org/10.1145/1011767.1011776
http://doi.acm.org/10.1145/1011767.1011776
http://dx.doi.org/10.1145/1011767.1011776
http://doi.acm.org/10.1145/2814328
http://doi.acm.org/10.1145/2814328
http://doi.acm.org/10.1145/2814328
http://dx.doi.org/10.1145/2814328
http://doi.acm.org/10.1145/2688500.2688501
http://doi.acm.org/10.1145/2688500.2688501
http://doi.acm.org/10.1145/2688500.2688501
http://dx.doi.org/10.1145/2688500.2688501
http://doi.acm.org/10.1145/1810479.1810540
http://dx.doi.org/10.1145/1810479.1810540
http://doi.acm.org/10.1145/2508834.2513149
http://dx.doi.org/10.1145/2508834.2513149
http://dx.doi.org/10.1145/2508834.2513149
http://dx.doi.org/10.1145/2508834.2513149
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
https://www.usenix.org/conference/atc15/technical-session/presentation/lepers
http://doi.acm.org/10.1145/1993478.1993481
http://dx.doi.org/10.1145/1993478.1993481


H.Daly, A.Hassan, M. F. Spear, R. Palmieri 18:19

Asenjo and Tim Harris, editors, Proceedings of the 21st ACM SIGPLAN Symposium on671

Principles and Practice of Parallel Programming, PPoPP 2016, Barcelona, Spain, March672

12-16, 2016, pages 45:1–45:2. ACM, 2016. URL: http://doi.acm.org/10.1145/2851141.673

2851189, doi:10.1145/2851141.2851189.674

26 Stanko Novakovic, Alexandros Daglis, Edouard Bugnion, Babak Falsafi, and Boris Grot.675

Scale-out NUMA. In Rajeev Balasubramonian, Al Davis, and Sarita V. Adve, editors,676

Architectural Support for Programming Languages and Operating Systems, ASPLOS ’14,677

Salt Lake City, UT, USA, March 1-5, 2014, pages 3–18. ACM, 2014. URL: http://doi.678

acm.org/10.1145/2541940.2541965, doi:10.1145/2541940.2541965.679

27 Iraklis Psaroudakis, Stefan Kaestle, Matthias Grimmer, Daniel Goodman, Jean-Pierre Lozi,680

and Timothy L. Harris. Analytics with smart arrays: adaptive and efficient language-681

independent data. In Rui Oliveira, Pascal Felber, and Y. Charlie Hu, editors, Proceedings682

of the Thirteenth EuroSys Conference, EuroSys 2018, Porto, Portugal, April 23-26, 2018,683

pages 17:1–17:15. ACM, 2018. URL: http://doi.acm.org/10.1145/3190508.3190514,684

doi:10.1145/3190508.3190514.685

28 William Pugh. Skip lists: A probabilistic alternative to balanced trees. Commun. ACM,686

33(6):668–676, 1990. URL: http://doi.acm.org/10.1145/78973.78977, doi:10.1145/687

78973.78977.688

29 Nikita Shamgunov. The memsql in-memory database system. In Justin J. Levandoski and689

Andrew Pavlo, editors, Proceedings of the 2nd International Workshop on In Memory Data690

Management and Analytics, IMDM 2014, Hangzhou, China, September 1, 2014., 2014.691

30 Dmitry Vyukov. Unbounded SPSC Queue, 2018. http://www.1024cores.net/home/692

lock-free-algorithms/queues/unbounded-spsc-queue.693

DISC 2018

http://doi.acm.org/10.1145/2851141.2851189
http://doi.acm.org/10.1145/2851141.2851189
http://doi.acm.org/10.1145/2851141.2851189
http://dx.doi.org/10.1145/2851141.2851189
http://doi.acm.org/10.1145/2541940.2541965
http://doi.acm.org/10.1145/2541940.2541965
http://doi.acm.org/10.1145/2541940.2541965
http://dx.doi.org/10.1145/2541940.2541965
http://doi.acm.org/10.1145/3190508.3190514
http://dx.doi.org/10.1145/3190508.3190514
http://doi.acm.org/10.1145/78973.78977
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1145/78973.78977
http://dx.doi.org/10.1145/78973.78977
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue
http://www.1024cores.net/home/lock-free-algorithms/queues/unbounded-spsc-queue

	Introduction
	Related Work
	Terminology, NUMA & Linked Data Structures
	NUMASK: A Concurrent Skip List Designed for NUMA
	Per-NUMA zone index layers
	Per-NUMA zone intermediate layers
	Propagation of Data Layer Modifications.
	Example of NUMASK deployment
	Design Trade-offs

	NUMASK: Protocol Details
	NUMASK: Data Structure Operations
	Data-Layer-Helper
	Per-NUMA-Helper
	Correctness Arguments

	NUMASK Optimization
	Evaluation
	Conclusion

