
Understanding RDMA Behavior in NUMA Systems
Jacob Nelson

Computer Science and Engineering Department
Lehigh University

Bethlehem, PA, USA
jjn217@lehigh.edu

Roberto Palmieri
Computer Science and Engineering Department

Lehigh University
Bethlehem, PA, USA
palmieri@lehigh.edu

Abstract—Most high performance computing clusters are
nowadays composed of large multicore machines that expose
Non-Uniform Memory Access (NUMA), and they are intercon-
nected using modern communication paradigms, such as Remote
Direct Memory Access (RDMA). In this work we perform a
study outlining the performance impact of these two technologies,
NUMA and RDMA, when combined. Findings show that system’s
software architecture should be designed for NUMA and RDMA;
otherwise major performance penalties occur.

Index Terms—Non-uniform Memory Access, Remote Direct
Memory Access, Distributed Systems

I. INTRODUCTION

High performance distributed systems are commonly de-
veloped relying on the message passing programming model,
in which data is sent between nodes via messages. Message
passing allows for easy interaction and clear abstraction,
but performance suffers from required computation by both
participants in the communication. In contrast, the shared
memory programming model in distributed systems enables
programmers to access memory address space that is shared
across nodes, thus nodes can access remote memory as if it
were local.

These programming models were clearly separated until
the adoption of RDMA (Remote Direct Memory Access)
motivated a hybrid model combining the strengths of shared
memory and message passing [1]. In RDMA, a network
interface controller (NIC) communicates directly with the host
memory controller, enabling access to remote memory without
involving the remote CPU, called one-sided interaction. One-
sided communication enables algorithmic innovations [1]–[3]
and reduces overhead, therefore lower latency and higher
throughput.

The advantage of avoiding allocating OS resources to handle
remote memory requests can disadvantage performance when
machines equipped with RDMA have NUMA (Non-Uniform
Memory Access) [4] architectures. NUMA causes memory
access latency to vary depending on physical location of the
requested memory. Message passing systems avoid costs by
pinning data and threads to the same NUMA zone as the NIC
[5] and using NUMA-aware data structures for processing [6].
However, one-sided communication conceals memory access
patterns from the remote node and hinders mitigating the
adverse effects of NUMA.

II. METHODOLOGY

Our goal is to isolate performance penalties produced by the
interaction between NUMA and RDMA, identify their causes,
and deliver guidelines for developing applications that use one-
sided transports. Note that any multicore computing node host-
ing more than one CPU-socket currently deploys NUMA, and
that any state-of-the-art high performance distributed testbed
leverages RDMA [7], [8]. To the best of our knowledge, our
investigation is the first of its kind.

We target applications with concurrent machine-local and
RDMA accesses, including distributed graph processing, real-
time data analytics, and transactional systems that co-locate
serving threads with application threads [2], [5], [9].

In the following we report the highlights of our findings for
one-sided RDMA interaction on NUMA machines. NUMA-
local refers to resources in the NIC’s NUMA zone; NUMA-
remote refers to any other NUMA zone. For our tests we use
a Mellanox ConnectX-3 network adapter [10] and nodes with
two Intel Xeon E5-2650v2 processors totaling 32 logical cores.

• RDMA reads and writes respond differently to NUMA-
remote memory. Under no machine-local load, RDMA
writes are faster than reads. But, when machine-local
write load is high, client read throughput for NUMA-
remote memory is up to 3.7x better than writes.

• Local worker thread location matters, even when data
is NUMA-local. Compared to no worker NUMA policy,
NUMA-local RDMA writes show 3.6x - 5x improvement
in throughput with all worker threads running on NUMA-
local cores.

• After initialization, shared memory buffer pages needed
by RDMA are locked and cannot be moved across
NUMA zones; OS cannot enable policy for NUMA
access optimizations [11], therefore applications must de-
cide where RDMA-accessed shared memory is allocated
a priori.

Our research enables the full exploitation of RDMA with
NUMA machines.

ACKNOWLEDGMENT

This material is based upon work supported by the National
Science Foundation under Grant No. CNS-1814974.

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Student Research Competition

273

REFERENCES

[1] M. K. Aguilera, N. Ben-David, I. Calciu, R. Guerraoui, E. Petrank, and
S. Toueg, “Passing messages while sharing memory,” in Proceedings
of the 2018 ACM Symposium on Principles of Distributed Computing.
ACM, 2018, pp. 51–60.

[2] A. Dragojević, D. Narayanan, O. Hodson, and M. Castro, “Farm: Fast
remote memory,” in Proceedings of the 11th USENIX Conference on
Networked Systems Design and Implementation, 2014, pp. 401–414.

[3] H. Chen, R. Chen, X. Wei, J. Shi, Y. Chen, Z. Wang, B. Zang, and
H. Guan, “Fast in-memory transaction processing using rdma and htm,”
ACM Transactions on Computer Systems (TOCS), vol. 35, no. 1, p. 3,
2017.

[4] C. Lameter, “Numa (non-uniform memory access): An overview,”
Queue, vol. 11, no. 7, pp. 40:40–40:51, Jul. 2013.

[5] F. Yang, M. Wu, J. Xue, W. Xiao, Y. Miao, L. Wei, H. Lin, Y. Dai, and
L. Zhou, “Gram: Scaling graph computation to the trillions,” in SoCC.
ACM - Association for Computing Machinery, August 2015.

[6] H. Daly, A. Hassan, M. F. Spear, and R. Palmieri, “NUMASK: high
performance scalable skip list for NUMA,” in 32nd International Sym-
posium on Distributed Computing, DISC 2018, New Orleans, LA, USA,
October 15-19, 2018, ser. LIPIcs, vol. 121, 2018, pp. 18:1–18:19.

[7] R. Ricci, E. Eide, and The CloudLab Team, “Introducing CloudLab: Sci-
entific infrastructure for advancing cloud architectures and applications,”
USENIX, vol. 39, no. 6, Dec. 2014.

[8] J. Mambretti, J. Chen, and F. Yeh, “Next generation clouds, the
chameleon cloud testbed, and software defined networking (sdn),” in
Proceedings of the 2015 International Conference on Cloud Computing
Research and Innovation (ICCCRI), ser. ICCCRI ’15. Washington, DC,
USA: IEEE Computer Society, 2015, pp. 73–79.

[9] B. Babcock, S. Babu, M. Datar, R. Motwani, and J. Widom, “Models
and issues in data stream systems,” in Proceedings of the Twenty-first
ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database
Systems, ser. PODS ’02. New York, NY, USA: ACM, 2002, pp. 1–16.

[10] “ConnectX R©-3 Pro Single/Dual-Port Adapter with Virtual
Protocol Interconnect,” Mellanox, 2018. [Online]. Avail-
able: http://www.mellanox.com/page/products dyn?product family=
161&mtag=connectx 3 pro vpi card

[11] “NUMA Balancing,” Red Hat, 2018. [Online]. Available: https:
//access.redhat.com/documentation/en-us/red hat enterprise linux/7/
html/virtualization tuning and optimization guide/sect-virtualization
tuning optimization guide-numa-auto numa balancing

274

