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ABSTRACT
There is a mechanical transformation by which algorithms for
software transactional memory can be transformed to work with
persistent memory. While correct, this transformation does not
take into account differences between the persistent and volatile
programming models. We show that fundamental properties of the
data regions accessed by a persistent software transaction allow for
a variety of optimizations not available in the volatile setting, and
these lead to significant performance gains.
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1 INTRODUCTION
Transactional Memory (TM) [8] allows programmers to identify
lexically-scoped transactions that must appear to execute in an
atomic, isolated, and consistent manner, and then a run-time sys-
tem monitors the behavior of concurrent transactions as they run.
When transactions have non-conflicting memory accesses, they are
allowed to complete. When transactions conflict, some subset of
conflicting transactions are aborted, undone, and retried, to ensure
that the behavior of the program is equivalent to one in which
transactions ran sequentially.

Persistent memory (PM), such as 3D-Xpoint [10], fundamentally
reshapes the memory and storage hierarchies by providing a single
memory that is dense, byte-addressable, fast, and able to retain
its contents without consuming energy. With PM, data does not
persist until it exits the CPU cache and crosses some persistence
threshold. A programmer can use special instructions (e.g., clwb) to
force a cache line to persist, but cannot persist multiple lines of data
without additional instrumentation. The overlap between TM and
PM instrumentation is substantial, leading to several concurrent
persistent TM (PTM) libraries [2, 3, 11].

There are two main approaches to PTM. With undo, a persistent
transaction (PTx) writing to locationWi must first write the current
value atWi to its undo log. Then it must persist that write (via clwb
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and a memory fence). Finally, it can updateWi with a new value.
In this manner, if the system crashes before the PTx completes, all
of itsWi can be restored to their state prior to the PTx’s execution.
When the PTx completes, it simply discards its undo log. In contrast,
with redo, a PTx writing toWi places the new value in a private
redo log. Subsequent reads ofWi must check the log to ensure
processor consistency. When the PTx is ready to complete, it must
persist the log (via clwb instructions and a memory fence), then
replay its writes from the log. If the system crashes before the
replay is complete, then the replay must be re-done after the system
restarts. Note that even when a PTM does not support concurrent
transactions, it must use either undo or redo.

2 NONVOLATILE CONSIDERATIONS
Yoo et al. showed that TM implementations must incur signifi-
cant overhead to contend with the idiosyncrasies of modern pro-
grams [7]. Privatization refers to an idiom in which a datum transi-
tions from a state where it is accessed via transactions to a state
where it is accessed without transactional synchronization (e.g.,
because it becomes logically private to a single thread). Granular
lost updates occur when a TM algorithm performs its undo or redo
logging at too coarse of a granularity. Consider a program in which
B1 and B2 are adjacent bytes. If B1 is private to thread T1, but B2 is
accessible to all threads’ transactions, then a transaction cannot per-
form undo or redo logging at cache-line or word granularity, lest its
logging reads and writes of B1 race with T1. TM also must support
irrevocability [4], where a transaction wishing to perform I/O or
use code that cannot be rolled back first serializes all transactions,
then runs in isolation without per-access instrumentation.

We observe a fundamental difference between PM and TM. In
TM, the instrumentation requirements of a location are a dynamic
property of how that location is used. In PM, the instrumentation
requirements of a location derive from the physical characteristics
of the underlying device. Languages are likely to require that all
accesses to PM are performed from transactions, and hence every
access to the PM will be instrumented. Thus the above concerns
do not apply to PTM transactions, except in the unlikely case that
they also access shared volatile memory. Thus in the common case,
the following optimizations become possible:

(1) Undo and redo logging can occur at a coarse granularity (e.g.,
half cache line) without risking granular lost updates.

(2) Privatization-related overheads at the end of transactions
will not be necessary.

(3) Irrevocability-related overheads at the beginning of transac-
tions can be eliminated.

Note that (1) will reduce a constant overhead that occurs on every
access in redo-based systems, (2) will reduce an overhead that is
linear in the number of threads, and (3) will eliminate a memory
fence and branch.
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Figure 1: PTM execution on STAMP benchmarks, using the default parameters

Threads 1 2 4 8 16 24 32 48
cgl_eager 1.18 1.03 1.05 1.05 1.02 1.03 1.18 1.10
cgl_lazy 1.19 1.17 1.12 1.13 1.10 1.79 1.27 1.11
orec_eager 1.00 1.06 1.15 1.45 2.90 4.22 4.77 4.82
orec_lazy 1.03 1.10 1.25 1.70 3.24 5.79 6.47 6.84
norec 0.98 1.06 1.18 1.40 1.70 2.07 2.12 2.21
ring 1.16 1.23 1.28 1.35 1.52 1.73 1.96 1.85

Table 1: Microbenchmark speedup for optimized PTM.

3 EVALUATION
We measure the impact of these changes on a Dell PowerEdge R640
with two 2.1GHz Intel Xeon Platinum 8160 processors and 192GB of
RAM. Each processor has 24 cores / 48 threads, runs Red Hat Linux
server 7.4, and LLVM/Clang 6.0 with O3 optimization. Experiments
are the average of five trials; to avoid NUMA effects, we limited
execution to a single CPU socket. Note that on this system, the
RAM is not persistent, but clwb incurs accurate latencies.

We compare variants of four TM algorithms. In CGL, every
transaction is protected by the same coarse-grained lock. In Orec,
locations hash to entries in a table of 1M locks [6]. NOrec detects
conflicts using values instead of locks [1]. Ring uses bit vectors
to express the read and write sets of transactions [5]. Our default
version of each algorithm is privatization-safe. “Eager” indicates
undo, and “lazy” indicates redo. NOrec and Ring are always lazy.
All experiments are run on the STAMP benchmark suite [9].

Figure 1 presents results for our unoptimized PTM algorithms.
Our first finding is that latencies due to persistence are much more
significant than latencies due to concurrency: persistent, concurrent
TM outperforms persistent lock-based code as early as 2 threads,
whereas non-persistent, concurrent TM cannot outperform non-
persistent lock-based code until 4-8 threads. From this, we conclude
that TM has the potential to be muchmore valuable in the persistent
setting than in the non-persistent setting. The second finding is
that redo substantially outperforms undo, except when there is a
high incidence of read-only and read-mostly transactions (genome).

Table 1 presents preliminary speedup results for a data structure
microbenchmark (RBTree, 16-bit keys, 80% lookup), with each PTM
optimized according to Section 2. We observe two trends. The first

is that coarsening the granularity of logging has a more significant
impact on lazy algorithms. The second is that avoiding quiescence
(only applicable to Orec PTM) is a powerful optimization, which
appears to favor Orec-Lazy in all cases. In future work, we plan
to complete our experimentation with STAMP to determine if the
same result holds true across more varied workloads, and to explore
additional optimizations to PTM.
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