
Lightweight Language-Level Support for
Transactional Memory

PanteA Zardoshti
Lehigh University
paz215@lehigh.edu

Michael Spear
Lehigh University
spear@lehigh.edu

1 Introduction
TheC++TransactionalMemory Technical Specification(TMTS) [1]
has not seen widespread adoption, in large part due to its
complexity. In particular, the TMTS requires changes to the
parser, to support a new language construct; to the type
system, to enable “safe” transactions that can be undone
and which can only call other “safe” functions; to exception
semantics, to support transactions that self-abort; and to
code generation, to insert instrumentation for checkpointing
stack state and to transform memory accesses into function
calls. Without a compelling performance argument, these
implementation and verification costs are too high, espe-
cially since many of these requirements only are necessary
for software TM.

In this poster, we show that the elimination of support for
self-abort, coupled with the use of an “executor” interface
to the TM system, produces a dramatically simpler TM im-
plementation. Our solution is self-contained in 2000 lines of
commented LLVM plugin code, plus TM library implementa-
tions. It is completely orthogonal to the rest of the compiler
implementation. It is resilient, able to correctly compile open-
source TM applications. And it is fast, performing on par
with the TMTS implementation in GCC.

2 Executor Interface
The first simplifying aspect of our work is the use of an
executor interface, in which lambdas are passed to a func-
tion that guarantees transactional execution. Obviously, this
eliminates the need for new keywords. More significantly,
it simplifies the implementation in two ways. First, the use
of lambdas simplifies checkpointing of local state. In the
TMTS, a transactional region that conditionally writes to
local variables of its enclosing scope must instrument those
writes and roll them back on abort; this instrumentation
is different from the checkpointing of heap accesses. With
lambdas, these accesses become equivalent to heap accesses,
because the executor framework makes clear that they are
not to the same stack frame as the transaction body. This
eliminates local variable checkpointing from the TM library
interface. Second, since a transaction’s lambda executes in
a different stack frame from its enclosing scope, it is easier
to identify transaction-local variables. This removes run-
time overhead, by avoiding checks to determine situations
in which transaction-local writes can avoid instrumentation.

3 Forbidding Explicit Rollback
In the TMTS, a transaction can only call “safe” functions, i.e.,
functions whose type makes clear that they do not touch
atomic variables, make system calls, perform in-line assem-
bly, or call non-safe functions. These functions are instru-
mented at compile-time, so that their memory accesses can
be undone. With separate compilation, it becomes difficult
for programmers to start using transactions: every function
must be marked safe before the program will even com-
pile [3]. By removing explicit rollback, exception semantics
become cleaner (exceptions that escape a transaction cause
it to commit, whereas in the TMTS they may cause a commit
or an abort, depending on the flavor of transaction being
used).

In studying transactional applications, we found that most
functions called by a transaction (especially in programs that
use templates) are visible to the compiler and can be instru-
mented without requiring programmer involvement. Thus
“viral” changes to function types are no longer required: a
transaction simply serializes when it encounters code that
has not been instrumented. During unit testing, these serial-
ization points are easy to detect, and C++ annotations suffice
to then coax the compiler into producing instrumentation.

4 Evaluation
For as trivial as the above changes seem, their impact is pro-
found. An elegant solution, of only 2000 commented lines of
LLVM plugin code, is able to achieve the same performance
as GCC’s implementation of the TMTS. Our code is decou-
pled from the rest of the compiler, and the semantics of the
executor are cleanly defined even when the compiler does
nothing (in which case the executor can simply run lambdas
one at a time).
To support this claim, we measured the performance of

the STAMP transactional benchmark suite [2], as well as
the memcached [3], x265 [4], and PBZip2 [4] applications.
Experiments were conducted on a Dell PowerEdge R640 with
two Intel Xeon Platinum 8160 CPUs at 2.1GHz and 196 GB
of RAM. Experiments are the average of five trials; to avoid
NUMA effects, we limited execution to a single CPU Socket.
In Figure 2, we analyze the instrumentation overhead of

our system for single-threaded code, using a no-op TM li-
brary. The three bars correspond to the baseline code, our
LLVM plugin, the addition of link-time optimization to the



ACM SRC, Jun, 2018, Philadelphia, PA PanteA Zardoshti and Michael Spear

(a) Genome (b) Intruder (c) Kmeans(low) (d) Kmeans(high)

(e) Labyrinth (f) SSCA2 (g) Vacation(low) (h) Vacation(high)

Figure 1. Stamp Benchmark

Figure 2. Single-thread execution overhead of the LLVM
plugin

use of our plugin. The main take-away is that the fundamen-
tal overhead of our instrumentation, relative to the original
code, is small. Despite its simpler design, our plugin does not
introduce high fundamental overheads. Most importantly,
LTO alone suffices to reduce most of the costs, and the re-
maining costs, which are primarily due to lambdas, are of
interest to all uses of executors.

Due to space constraints, Figure 1 restricts to investigating
performance on the STAMP benchmarks. Here, the main
takeaway is that our approach is competitive with GCC’s
implementation: across STAMP and the other benchmarks,
we are able to achieve the same performance, or sometimes
a constant factor better, while supporting the same features
and implementing the same TM algorithms.

While our results are limited to an apples-to-apples com-
parison of the same software TM algorithm in GCC and
our system, we have successfully implemented many more
software TM algorithms in our system, and we found the
process to be much simpler than when we did the same in
GCC. Anecdotally, this suggests that our approach simplifies

TM-related programming tasks at all levels, from compiler
to library to application.

5 Conclusions
We believe that this work establishes a clear path forward
for the standardization of TM in C++. The simpler "executor”
interface, coupled with the elimination of self-abort, makes
for a fast, powerful approach to TM that can be implemented
in a compiler and run-time library in a piecemeal fashion,
and is able to handle the most advanced TM applications
available. Our work also establishes a need for more effort
in optimizing lambda support in C++ compilers not only for
TM, but for any executor framework.

References
[1] ISO/IEC JTC 1/SC 22/WG 21. 2015. Technical Specification for C++ Ex-

tensions for Transactional Memory. (May 2015). http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

[2] Chi CaoMinh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-
tun. 2008. STAMP: Stanford Transactional Applications for Multi-
processing. In Proceedings of the IEEE International Symposium on
Workload Characterization. Seattle, WA.

[3] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. 2014. Trans-
actionalizing Legacy Code: An Experience Report Using GCC and
Memcached. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
Salt Lake City, UT.

[4] Tingzhe Zhou, PanteA Zardoshti, and Michael Spear. 2017. Practical
Experience with Transactional Lock Elision. In Proceedings of the 46th
International Conference on Parallel Processing. Bristol, UK.

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

	1 Introduction
	2 Executor Interface
	3 Forbidding Explicit Rollback
	4 Evaluation
	5 Conclusions
	References

