
FW-KV: Improving Read Guarantees in PSI
Masoomeh Javidi Kishi

Lehigh University

USA

maj717@lehigh.edu

Roberto Palmieri

Lehigh University

USA

palmieri@lehigh.edu

ABSTRACT
We present FW-KV, a novel distributed transactional in-memory

key-value store that guarantees the Parallel Snapshot Isolation (PSI)

correctness level. FW-KV’s primary goal is to allow its read-only

transactions to access more up-to-date (fresher) versions of objects

than Walter, the state-of-the-art implementation of PSI. FW-KV

achieves that without assuming synchrony or a synchronized clock

service. The improved level of freshness comes at no significant

performance degradation, especially in low contention workloads,

as assessed by our evaluation study including two standard OLTP

benchmarks, YCSB and TPC-C. The performance gap between FW-

KV and Walter is less than 5% in low contention scenarios, and less

than 28% in high contention.

CCS CONCEPTS
• Theory of computation→ Concurrency; • Information sys-
tems→ Database transaction processing.

KEYWORDS
Transactions, Consistency, Snapshot Isolation

ACM Reference Format:
Masoomeh Javidi Kishi and Roberto Palmieri. 2021. FW-KV: Improving Read

Guarantees in PSI. In 22nd International Middleware Conference (Middleware
’21), December 6–10, 2021, Québec city, QC, Canada. ACM, New York, NY,

USA, 12 pages. https://doi.org/10.1145/3464298.3476131

1 INTRODUCTION
Snapshot Isolation (SI) [3] is a widely adopted consistency level

often used as a practical alternative to Serializability [4], the gold

standard criterion for concurrency control implementations [18, 28].

Informally, one of the great advantages of SI is that a transaction

should not abort even though the set of values read (we name it

reading snapshot), and not written, during its execution has been

overwritten by a concurrent transaction [3]. By leveraging this

property, along with a multi-versioned data repository, major data-

base engines [26, 29] provide SI concurrency control on a single

node by defining the reading snapshot as all the versions available

at the time a transaction starts. An immediate consequence of this

design is that read-only transactions, which never modify the data

repository, can execute without the chance of aborting.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8534-3/21/12.

https://doi.org/10.1145/3464298.3476131

In a centralized deployment, the reading snapshot is often de-

termined by assuming that time is measured by a shared atomic

counter that advances whenever any transaction starts or com-

mits [14]. In distributed systems where off-the-shelf hardware is

assumed, nodes do not share a synchronized clock and the com-

munication among them is asynchronous, SI transactions cannot

simply define an up-to-date reading snapshot at the time they start

because of the absence of a shared notion of time among nodes.

Walter [28] is a distributed transactional system whose concur-

rency control implements a relaxed variant of SI, called Parallel

Snapshot Isolation (or PSI). In PSI, the transaction reading snapshot

can be arbitrarily outdated in order to deal with the aforemen-

tioned absence of shared clocks among nodes (other relaxations are

overviewed in Section 6).

Walter logically assigns objects to so called preferred nodes. A
preferred node always stores the latest version of an object. The

object might also be replicated on other non-preferred nodes, which

might not always have the latest version of objects. If a transaction

begins on a node 𝑁 and reads an object whose preferred node is

𝑁 (we name such a transaction local), then its reading snapshot is

guaranteed to be up-to-date. Otherwise, when a transaction begins

on a non-preferred node or any other node (for brevity, in both these

cases we refer to this transaction as non-local), the read operations

can return an outdated object version.

Walter attempts to patch the above issue by using asynchro-

nous messages, sent outside the transaction critical path, aimed at

periodically updating the logical clock of other nodes, including

the non-preferred ones. However, until asynchronous messages

are received, non-local read-only transactions can still return ar-

bitrarily old versions. Another side effect of this solution is that

non-local update transactions will be repeatedly aborted until the

above asynchronous messages are delivered.

In this paper we present FW-KV, a distributed concurrency con-

trol that uses logical (vector) clocks [20] to implement an enhanced

version of Walter’s concurrency control with the goal of improv-

ing data freshness for read-only transaction. FW-KV exploits the

fact that a common behavior for transactions is accessing mostly

local objects [5]. For the remaining accesses, Walter must adhere

to a possibly old reading snapshot. FW-KV improves this scenario

for read-only transactions. Every access to a new node made by

a read-only transaction is guaranteed to observe the most recent

and correct reading snapshot. The only case in which a read-only

transaction is prevented from accessing the latest reading snapshot

is when multiple accesses target objects stored on the same node.

A practical example in which FW-KV always returns the most

recent reading snapshot is when we consider the two transaction

profiles Order-Status and Payment of the well-known benchmark

TPC-C benchmark [10]. The former queries the status of a cus-

tomer’s last order from a warehouse to retrieve information about

https://doi.org/10.1145/3464298.3476131
https://doi.org/10.1145/3464298.3476131

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Javidi Kishi and Palmieri

related order lines. The latter processes the payment for the cus-

tomer and modifies the balance of the warehouse where the order

took place. The read-only transaction Order-Status can see the

latest version of the accessed objects modified by Payment since the
first access is to retrieve the warehouse, and the subsequent read

operations are on objects that have been committed along with that

warehouse, regardless of the preferred node of the warehouse.

The properties ensured by FW-KV fit the characteristics of mod-

ern social network applications. In fact, the traditional understand-

ing of those applications is that reading arbitrarily old values is

admissible for users. However, users nowadays increasingly de-

mand more stringent ordering requirements among updates (e.g.,

social media news).

The capability of FW-KV to observe fresh reading snapshots

comes at the expense of some performance overhead. As empiri-

cally shown in our evaluation study, when application workload is

dominated by read-only transactions, a typical case in many real

applications and services [2, 30], the overhead of FW-KV becomes

negligible. Such cases represent the practical sweet spot for FW-KV,

in which the great scalability and performance of PSI (and Walter)

are preserved while read-only transactions read up-to-date values.

The major algorithmic challenge in achieving FW-KV’s goals is

to deal with the (fast) technique used by Walter to update nodes’

logical clocks upon transaction commits. In fact, since Walter’s

transaction reading snapshot can be arbitrarily old, vector clocks

are updated without synchronously propagating causal dependency

with other transactions.

Unlike Walter, the reading snapshot of a read-only transaction in

FW-KV is established during its execution by means of attempting

to include the newest versions of an object stored by a node that has

not been contacted so far by this transaction. FW-KV ensures that

by efficiently tracking some (but not all) transaction dependency

relations. Update transactions execute with similar guarantees as

in Walter, although FW-KV still attempts to improve data freshness

by deploying a technique, similar to the one used in SCORe [23],

where the reading snapshot is defined upon the first read operation.

To assess performance of FW-KV, we implement a distributed

key-value store with the FW-KV concurrency control at its core,

and contrast its performance against Walter and a well-known

baseline distributed transactional system, named 2PC-baseline. In

2PC-baseline, all transactions, including read-only, validate read

keys to ensure correct and the most recent reading snapshot, and

use the Two-Phase Commit protocol (2PC) to commit [4]. We use

two OLTP benchmarks, YCSB [8] and TPC-C [10], to generate

transactional workload.

Results show that FW-KV improves read-only transactions’ data

freshness with a performance penalty of less than 5% in case of

low contention, and it goes up to 20% and 28% in YCSB and TPC-

C, respectively, when contention increases. FW-KV’s capability of

reading fresher data than Walter allows its update transactions to

abort up to 3 times less in case asynchronous messages propagation

is delayed due to network congestion.

The paper makes the following contributions. The FW-KV im-

proves upon Walter’s concurrency control by:

• Increasing data freshness of read-only transactions;

• Reducing occurrence of long fork anomaly;

• Enhancing the performance robustness in terms of update

transactions’ abort rate, in case asynchronous messages are

delayed due to network congestion.

2 OVERVIEW, ASSUMPTIONS AND
PROPERTIES

2.1 System Model
FW-KV assumes a system made of a set of nodes that do not share

neither memory nor a global clock. Nodes communicate through

message passing over reliable asynchronous channels, meaning

messages are guaranteed to be eventually delivered unless a crash

happens at the sender or receiver node. There is no assumption on

the speed and on the level of synchrony among nodes.

2.2 Data Organization
Every node 𝑁𝑖 maintains shared objects (or keys) adhering to the

key-value model [24]. The data repository is multiversioned, mean-

ing each shared object keeps a list of previous versions. Each version

stores the value and the commit vector clock of the transaction

that produced the version. In FW-KV, every shared key can be

stored in an arbitrary preferred site. For object reachability, FW-KV

implements a local look-up function using consistent hashing, a

commonly used technique to map keys to nodes. An object is local

with respect to a node if it is stored on that node, otherwise it is

remote.

To survive failures, FW-KV assumes each preferred site is highly

available, meaning the site is expected to implement a replication

technique to resist faults. For simplicity in the explanation of our

distributed concurrency control, we do not account for replication.

In literature, many efficient techniques have been proposed to ad-

dress the problem of preserving availability of a site (often called

shard) [15, 19].

2.3 Transaction model
Wemodel transactions as a sequence of read andwrite operations on

shared objects (or keys), preceded by a begin operation, and followed
by a commit or abort operation. A client begins a transaction on the

co-located node and the transactions can read/write data belonging

to any node; no a-priori knowledge on the accessed keys is assumed.

Every transaction starts with a client submitting it to the sys-

tem, and finishes its execution informing the client about its final

outcome: commit or abort. Transactions that do not execute any

write operation are called read-only, otherwise they are update

transactions. Read-only transactions are expected to be identified

by the programmer.

A transaction is local if it begins on a node 𝑁 and all its read op-

erations access objects whose preferred node is 𝑁 itself. Otherwise

the transaction is non-local.
In terms of consistency level, FW-KV preserves Parallel Snapshot

Isolation as the original Walter [28] protocol.

2.4 Freshness Level of Reading Snapshot
FW-KV improves the level of freshness of read operations on the

original Walter’s distributed concurrency control. We define the

level of freshness for a read operation𝑂𝑃 issued by a transaction𝑇

FW-KV: Improving Read Guarantees in PSI Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

on a shared object 𝑜 as the metric that quantifies the gap between

the version returned by 𝑂𝑃 and the latest version of 𝑜 available

in the data store at the time 𝑂𝑃 is issued. A property known as

real-time order [22], often used in the definition of consistency

levels (e.g., Strict Serializability [9]), is an expression of the level of

freshness for read operations that mandates the access to at least

the latest version of an object available before the start time of

a transaction. Preserving real-time order is costly in distributed

settings due to the absence of a shared notion of time [18, 22].

In FW-KV, the level of freshness depends on whether the trans-

action issuing the request is read-only or update.

Let us assume a read-only transaction 𝑇𝑅𝑂 executing on 𝑁𝑅𝑂
and issuing a read operation 𝑂𝑃𝑖 to access object 𝑜 stored on node

𝑁𝑜 . Operation 𝑂𝑃𝑖 returns the latest version of 𝑜 if it is the first

time for𝑇𝑅𝑂 to access an object stored in 𝑁𝑜 . After that, subsequent

operations𝑂𝑃 𝑗 of𝑇𝑅𝑂 , needing to contact𝑁𝑜 to read either 𝑜 or any

other object 𝑞 stored in 𝑁𝑜 , will return a version consistent with

the version of 𝑜 previously read, which might or might not match

the latest commit of 𝑞. That means, if all read operations of 𝑇𝑅𝑂
access either local objects or objects stored on different nodes, the

reading snapshot of 𝑇𝑅𝑂 is guaranteed to be the freshest possible

(equivalent to guaranteeing real-time order).

An update transaction in FW-KV is guaranteed to return the

latest version of its first read operation. After that, the logical clock

associated with the node handling the first read is used to derive

the versions to be returned by subsequent reads, regardless of the

contacted nodes.

3 BACKGROUND & MOTIVATION
3.1 Walter & PSI
Walter [28] is a multi-version transactional key-value store that

provides a relaxed version of SI called Parallel Snapshot Isolation

(PSI). Walter uses a technique named preferred site where each ob-

ject is logically assigned to a specific site (or node) in the system.

The concept of preferred site is meant to favor transactions access-

ing objects maintained by the local nodes. With that, Walter can

quickly commit these transactions without checking other nodes

for write conflicts.

In other words, if a local transaction issues an operation on object

𝑥 , then it can access the latest version of 𝑥 . However, non-local

transactions are still allowed to modify 𝑥 on 𝑁𝑖 but their updates

can be repeatedly aborted in case the accessed version of 𝑥 is not

the latest one.

After a local transaction commits, the acknowledgment of its

successful commit should be propagated to other nodes in the sys-

tem. This propagation is done asynchronously and its goal is to

eventually allow non-local transactions to advance their reading

snapshot. As an example of the above propagation mechanism, sup-

pose the preferred site of object 𝑥 is 𝑁1. Local transaction 𝑇1 starts

at 𝑁1 and creates a new version 𝑥1 of 𝑥 . A non-local transaction

𝑇2, started at node 𝑁2, cannot create another version of 𝑥 (i.e., 𝑥2)

until 𝑁2 is being acknowledged about the commit of𝑇1 in 𝑁1. After

𝑁2 receives the propagation message of 𝑇1’s commit, 𝑇2 is able to

proceed its execution and successfully create 𝑥2.

3.2 The Challenge of Updating Reading
Snapshot in Walter

Walter does not update the reading snapshot of a transaction during

its execution. This is because, by doing that without leveraging

additional metadata, a well-known anomaly called Read Skew [3]

might occur. Read Skew happens if a transaction 𝑇1 reads a version

𝑥1 for object 𝑥 and concurrently a transaction𝑇2 commits an update

on objects 𝑥 and 𝑦, which creates a new version 𝑥2 of 𝑥 and 𝑦2 of 𝑦.

If 𝑇1 reads 𝑦 after committing 𝑇2, by simply advancing its reading

snapshot it might return 𝑦2, which is incorrect.

Solutions in literature, such as SSS [18], GMU [24], andNemo [21],

overcome the Read Skew anomaly by updating vector clocks in a

way that takes into account causal dependencies among nodes that

have been previously contacted by a transaction. Walter prefers a

simpler approach in which only the vector clock entry associated

with the node where the transaction executes is updated upon com-

mit. Such a decision is supported by the fact that read operations

in Walter can read arbitrarily old values, therefore there is no need

to account for causal dependency relations developed after the cho-

sen reading snapshot. FW-KV’s goal is to preserve the advantage

of Walter’s simpler concurrency control while adding additional

metadata to improve data freshness of read-only transactions.

3.3 Data Freshness and the Long Fork Anomaly
Figure 1 shows an example of an execution accepted by Walter in

which two read-only transactions are allowed to see the results of

two update transactions in different order. Although this execution

is admitted by PSI (anomaly known as long-fork [28]), it introduces

an undesirable behavior at the application level, as described below.

Key=x,	value=x0 Key=y,	value=y0

2 7 6 13 2 7 6 132 7 6 13 2 7 6 13

T2:	Write(x,	x1)

T3:	Write(y,	y1)

2 8 6 13

2 7 7 13

T1:	 Read(x==x1)	
Read(y==y0)																										

13682T1.VC

Ti
m
e

Node	N1 Node	N2 Node	N3 Node	N4

Key=x,	value=x1

Key=y,	value=y1

T4:				Read(y==y1)	
Read(x==x0)																										

13772T4.VC

Figure 1: Dashed arrows represent the asynchronous propaga-
tion messages. The reading snapshot of 𝑇1 reflects the times-
tamp of 𝑇2 in the second entry of 𝑇1’s vector clock (𝑇1 .𝑉𝐶)
but it does not reflect the timestamp of 𝑇3 in the third entry
of 𝑇1’s vector clock. The reading snapshot of 𝑇4 reflects the
timestamp of𝑇3 in the third entry of𝑇4’s vector clock (𝑇4 .𝑉𝐶)
but it does not reflect the timestamp of 𝑇2 in the third entry
of 𝑇4’s vector clock.

In the example we assume four nodes, 𝑁1, 𝑁2, 𝑁3, 𝑁4, and four

transactions, 𝑇1, 𝑇2, 𝑇3, 𝑇4, each begins and executes on the respec-

tive node. By assumption,𝑇2 and𝑇3 are non-conflicting local update

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Javidi Kishi and Palmieri

transactions; while 𝑇1 and 𝑇4 are non-local read-only transactions

both accessing objects from 𝑁2 and 𝑁3. As of Walter’s rule, each

read-only transaction starts its execution by acquiring the latest

vector clock of the node where it executes.

Both𝑇2 and𝑇3 after their commit on their preferred sites 𝑁2 and

𝑁3 send a propagation message to all other nodes. Let us assume𝑇1
starts its execution after receiving the propagation of𝑇2 and before

receiving the propagation of 𝑇3. On the other hand, 𝑇4 starts its

execution after receiving the propagation of𝑇3 and before receiving

the propagation of 𝑇2. Receiving propagate from different nodes in

different orders is a likely scenario in an asynchronous distributed

system.

Since 𝑇1 and 𝑇4 start after the commit of 𝑇2 and 𝑇3, their respec-

tive clients might have had the chance to interact with each other

outside the system (e.g., in a social media platform when a user

publishes a new post and alerts her/his friends about the new con-

tent so that they can read it). The consequence of this interaction

is that 𝑇1’s and 𝑇4’s clients will not expect to observe a snapshot in

which only some of the updates that they expected to be committed

are returned by their read-only transactions.

FW-KV overcomes the above issue by allowing𝑇1 and𝑇4 to read

the modifications made by 𝑇2 and 𝑇3, as long as i) no other reads

accessing objects on 𝑁2 and 𝑁3 are issued by 𝑇1 and 𝑇4, and ii) 𝑇2
and 𝑇3 commit before 𝑇1 and 𝑇4 start. Note that, in the case 𝑇1 and

𝑇4 are concurrent with𝑇2 and𝑇3, both FW-KV and PSI allow𝑇1 and

𝑇4 to observe update transactions in different order, therefore long

fork is still possible for FW-KV as well. However, the latter case of

long fork cannot trigger the behavior illustrated above at the client

side, and this is again thanks to FW-KV’s improve data freshness.

4 FW-KV: PROTOCOL DESCRIPTION
4.1 Metadata
Since FW-KV is built on top of Walter, we first list Walter’s meta-

data for completeness and then we show the additional metadata

required by FW-KV.

Transaction vector clock. A transaction 𝑇 holds a vector clock

T.VC whose size is equal to the number of nodes in the system.

T.VC encapsulates the knowledge of 𝑇 with respect to the logical

timestamps of other nodes. In practice, T.VC is used as visibility

bound for all versions accessible by 𝑇 .

Transaction write-set. Every transaction 𝑇 holds a private buffer

called T.writeset, which contains the objects the transaction wrote,

along with their values.

Current sequence number . Every node 𝑁𝑖 is assigned with a num-

ber 𝐶𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖 representing the sequence number of the latest

transaction issued and committed at node 𝑁𝑖 .

The following metadata is exclusive for FW-KV.

Transaction node access vector clock. A transaction𝑇 records the

sites where it reads from in a vector clock, called T.hasRead. Every
time 𝑇 reads from a node 𝑁 𝑗 for the first time during its execution,

T.hasRead[j] is set to true. When T.hasRead[j] is set to true,
𝑇 ’s visible timsestamp with respect to 𝑁 𝑗 is fixed and cannot be

advanced for 𝑇 ’s future accesses to 𝑁 𝑗 .

Node vector clock. Each node 𝑁𝑖 is associated with a vector clock,

called 𝑠𝑖𝑡𝑒𝑉𝐶𝑖 . The 𝑗
𝑡ℎ

entry of this vector clock represents the last

transaction from node 𝑁 𝑗 that was committed at site 𝑁𝑖 .

Transaction commit vector clock. When the commit decision for

transaction𝑇 issued by 𝑁𝑖 is made, the𝐶𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖 is incremented

and 𝑠𝑖𝑡𝑒𝑉𝐶 of 𝑁𝑖 is updated at the 𝑖𝑡ℎ position and the updated

value of 𝑠𝑖𝑡𝑒𝑉𝐶 is assigned to transaction commit vector clock (i.e.,

𝑇 .𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝐶). In addition, the𝐶𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖 is also sent to the other

nodes involved in the commit procedure to update their 𝑠𝑖𝑡𝑒𝑉𝐶 at

the 𝑖𝑡ℎ position.

Version’s vector clock. As it is mentioned in Section 2, each object

𝑜 is associated with a set of versions where each version 𝑣 is created

by an update transaction. The commit vector clock of each update

transaction is assigned to its created versions and is called version

vector clock (𝑣 .𝑉𝐶).

Version identifier . Each version 𝑣 of object 𝑜 is associated with a

monotonically increasing scalar number, called 𝑣 .𝑖𝑑 .

Version access set. As shown in Section 3, by relying on the way

Walter establishes transactions’ commit vector clocks (i.e., without

tracing causal dependencies among involved nodes), advancing

transaction vector clock during execution without additional meta-

data violates PSI.

In order to advance the reading snapshot, given a transaction

𝑇𝑖 the concurrency control needs to be able to trace concurrent

transactions 𝑇𝑗 that overwrite versions read by 𝑇𝑖 . In this case we

say that 𝑇𝑖 has an anti-dependency relation (i.e., a read-after-write

conflict) with 𝑇𝑗 . FW-KV does that by implementing a technique

called visible reads [22].
The visible reads technique is implemented in the following way.

Each version is associated with a set containing identifiers of read-

only transactions that read that specific version. During the commit

phase of an update transaction, the set of identifiers of concurrent

conflicting read-only transactions is collected. This set is propagated

to the version-access-sets of the newly created versions of this

update transaction since with its commit, it establishes transitive

anti-dependency relations with those read-only transactions.

If a read-only transaction 𝑇 contacts a node for the first time,

it can advance its reading snapshot unless it finds that its own

identifier exists in the version-access-set of the version to be read.

In that case, 𝑇 should select a previous version whose version-

access-set does not contain 𝑇 ’s identifier.

Algorithm 1 Begin procedure of transaction 𝑇 in node 𝑁𝑖

1: function BeginTx(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇)
2: 𝑇 .𝑉𝐶 ← 𝑠𝑖𝑡𝑒𝑉𝐶𝑖
3: for all (𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑖]) do
4: 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑖] ← 𝑓 𝑎𝑙𝑠𝑒
5: end for
6: end function

4.2 Transactional Begin and Write Operation
Alg. 1 represents theway that transaction𝑇 vector clocks (𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑

and 𝑇 .𝑉𝐶) are initialized once 𝑇 begins. When 𝑇 begins in node

𝑁𝑖 , it assigns the 𝑠𝑖𝑡𝑒𝑉𝐶 of 𝑁𝑖 , which shows the vector clock of the

latest committed/propagated transactions from all the sites in/to

𝑁𝑖 , to its own 𝑇 .𝑉𝐶 . At this point, since no read is issued yet, all

elements of 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑗] are set to false.
In FW-KV update transactions implement lazy update, meaning

their written keys are not immediately visible and accessible at the

FW-KV: Improving Read Guarantees in PSI Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

time of the write operation, but they are buffered in the transaction

𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡 .

4.3 Transactional Read Operation
Alg. 2 describes the steps of a read operation for key𝑘 by transaction

𝑇 . If 𝑘 has been already written by transaction 𝑇 , then the written

value of 𝑘 is returned (Lines 2- 4 of Alg. 2). Otherwise, a read request

(ReadRequest) is forwarded to the node that stores 𝑘 , which might

be the same node where 𝑇 executes (local read) (Line 6 of Alg. 2).

The read is handled differently depending on the type of the

issuing transaction. Importantly, for avoiding concurrent modifi-

cations while the read logic is processed, the read handler should

be executed in mutual exclusion with respect to message handlers

from other concurrent conflicting update transactions. However,

read-only transactions are still allowed to operate simultaneously

on read handlers.

Algorithm 2 Read operation

1: function read(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇 , 𝑘𝑒𝑦 𝑘)

2: if < 𝑘, 𝑣𝑎𝑙 >∈ 𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡 then
3: return 𝑣𝑎𝑙
4: end if
5: 𝑡𝑎𝑟𝑔𝑒𝑡 ← 𝑠𝑖𝑡𝑒 (𝑘)
6: send 𝑅𝑒𝑎𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑇,𝑘] to 𝑡𝑎𝑟𝑔𝑒𝑡
7: wait Receive 𝑅𝑒𝑎𝑑𝑅𝑒𝑡𝑢𝑟𝑛 [𝑣𝑎𝑙,𝑚𝑎𝑥𝑉𝐶] from 𝑡𝑎𝑟𝑔𝑒𝑡
8: 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑡𝑎𝑟𝑔𝑒𝑡] ← 𝑡𝑟𝑢𝑒

9: 𝑇 .𝑉𝐶 ←𝑚𝑎𝑥 (𝑇 .𝑉𝐶,𝑚𝑎𝑥𝑉𝐶)
10: if (T is read-only) then
11: 𝑇 .𝑟𝑒𝑎𝑑𝐾𝑒𝑦𝑠 ← 𝑇 .𝑟𝑒𝑎𝑑𝐾𝑒𝑦𝑠 ∪ {𝑘 }
12: end if
13: return 𝑣𝑎𝑙
14: end function

Read operations by Read-only Transactions. Lines 2-10 of Alg. 3

describes the read policy for a read-only transaction 𝑇 . The first

step is to identify the set of versions for 𝑘 that are visible according

to 𝑇 .𝑉𝐶 . We say a version 𝑣 is visible for a transaction 𝑇 if all the

entries of𝑇 .𝑉𝐶 , for which𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 is true, have values greater or
equal to the values of the respective entries in 𝑣 .𝑉𝐶 (Alg. 3 Lines 4).

Algorithm 3 Version selection logic in node 𝑁𝑖

1: upon Receive 𝑅𝑒𝑎𝑑𝑅𝑒𝑞𝑢𝑒𝑠𝑡 [𝑇,𝑘] from 𝑁 𝑗 in 𝑁𝑖 do
2: if (𝑇 𝑖𝑠 𝑟𝑒𝑎𝑑-𝑜𝑛𝑙𝑦) then
3: get lock(𝑘𝑒𝑦 = 𝑘 , 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)

4: 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 ← {𝑣 ∈ 𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑒𝑡 : ∀𝑠𝑖𝑡𝑒 ∈ 𝑠𝑖𝑡𝑒𝑠 :
𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑠𝑖𝑡𝑒] = 𝑡𝑟𝑢𝑒 ⇒ 𝑣.𝑉𝐶 [𝑠𝑖𝑡𝑒] <=
𝑇 .𝑉𝐶 [𝑠𝑖𝑡𝑒] }

5: 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑆𝑒𝑡 ← {𝑣 ∈ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 : 𝑇 .𝑖𝑑 ∈ 𝑣.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡 }
6: 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 ← 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡\𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑆𝑒𝑡
7: 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑣𝑒𝑟 ∈ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 : ∀𝑣 ∈ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 ⇒

𝑣𝑒𝑟 .𝑖𝑑 >= 𝑣.𝑖𝑑
8: 𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡 ← 𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡 ∪ {𝑇 .𝑖𝑑 }
9: release lock(𝑘𝑒𝑦 = 𝑘 , 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)
10: end if
11: if (𝑇 𝑖𝑠 𝑢𝑝𝑑𝑎𝑡𝑒) then
12: get lock(𝑘𝑒𝑦 = 𝑘 , 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)

13: 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 ← {𝑣 ∈ 𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑒𝑡 : ∀𝑠𝑖𝑡𝑒 ∈ 𝑠𝑖𝑡𝑒𝑠 :
𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑠𝑖𝑡𝑒] = 𝑡𝑟𝑢𝑒 ⇒ 𝑣.𝑉𝐶 [𝑠𝑖𝑡𝑒] <=
𝑇 .𝑉𝐶 [𝑠𝑖𝑡𝑒] }

14: 𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑆𝑒𝑡 ← {𝑣 ∈ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 : ∀𝑠𝑖𝑡𝑒 ∈ 𝑠𝑖𝑡𝑒𝑠 :
𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑠𝑖𝑡𝑒] = 𝑡𝑟𝑢𝑒⇒ 𝑣.𝑉𝐶 [𝑠𝑖𝑡𝑒] = 𝑇 .𝑉𝐶 [𝑠𝑖𝑡𝑒]
∧∃𝑠 ∈ 𝑠𝑖𝑡𝑒𝑠 : 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑠] = 𝑓 𝑎𝑙𝑠𝑒. ∧ 𝑣.𝑉𝐶 [𝑠] > 𝑇 .𝑉𝐶 [𝑠] }

15: 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 ← 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡\𝐸𝑥𝑐𝑙𝑢𝑑𝑒𝑑𝑆𝑒𝑡
16: 𝑣𝑒𝑟𝑠𝑖𝑜𝑛 ← 𝑣𝑒𝑟 ∈ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 : ∀𝑣 ∈ 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 ⇒

𝑣𝑒𝑟 .𝑖𝑑 >= 𝑣.𝑖𝑑
17: release lock(𝑘𝑒𝑦 = 𝑘 , 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)
18: end if
19: send ReadReturn [𝑣𝑒𝑟𝑠𝑖𝑜𝑛, 𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑉𝐶] to 𝑁 𝑗

20: end

From the latter set (𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 in the Alg. 3), those versions

whose version-access-set include 𝑇 ’s identifier, should be excluded

because that means 𝑇 has already established an anti-dependency

(directly or transitively) with the transactions that committed those

versions. Among the remaining versions, the one with the highest

identifier (meaning the freshest among them) is selected as the

result of the read operation.

Figure 2 illustrates an example of how read-only transactions

establish their reading snapshots. Transaction𝑇1 starts its execution

at node 𝑁1 and reads 𝑥0, the latest version of object 𝑥 , when it

accesses node 𝑁2 (Lines 2-10 of Alg. 3). Note that the ExcludedSet
in Line 5 of Alg. 3 is empty. Upon reading 𝑥0, the identifier of 𝑇1
is inserted into the corresponding version-access-set of 𝑥0 (Line 8

of Alg. 3). 𝑇1 also updates 𝑇1 .𝑉𝐶 [2] to the latest timestamp of 𝑁2

which is “7” (Line 9 of Alg. 2). After that, a concurrent update

transaction𝑇3 commits an update on 𝑥 and 𝑦 on 𝑁2 and increments

𝑠𝑖𝑡𝑒𝑉𝐶2 [3] to timestamp “7” (Line 21 of Alg. 5). Later, after 𝑇3
commits at 𝑁2, 𝑇1 issues another read on 𝑦. At this point, since

𝑦1’s version-access-set includes 𝑇1’s identifier, because it has been

inserted by the commit procedure of 𝑇3 (done in Line 19 of Alg. 5 –

see Section 4.4), 𝑦1 cannot be returned by 𝑇1’s read operation due

to the anti-dependency relation already established between𝑇1 and

𝑇3 (ExcludedSet includes 𝑇3’s identifier in Line 5 of Alg. 3).

After committing, a Remove message to 𝑁2 is sent for notifying

the completion of 𝑇1 (see Section 4.5). A read-only transaction

should also record the accessed keys in a set called readkeys, used
only to dispatch Remove messages.

T3:	Write(x,	x1)
Write(y,	y1)

T1:	Read(x	==	x0)

Read(y	==	y0)

62T1.VC

Ti
m
e

672T1.VC

5

62T1.VC 7 Commit

62 5 62 7 62 7
Key=x:		value=x0,	x0.VAS={}
Key=y:		value=y0,	y0.VAS={}

Key=x:	value=x0,	
x0.VAS={T1}							

Read
Read	
Return

Key=x,	value=x0,	x0.VAS={T1}
value=x1,	x1.VAS={T1}

Key=y,	value=y0,	y0.VAS={}
value=y1,	y1.VAS={T1}

Read

Read	
Return

Remove

Key=x,	value=x0,	x0.VAS={T1}
value=x1,	x1.VAS={T1}

Key=y,	value=y0,	y0.VAS={	}
value=y1,	y1.VAS={T1}

72 7

Node N2 Node N3Node N1

Figure 2: Example of execution where a read-only transac-
tion advances its reading snapshot and still reads consistently.
VAS is the version-access-set. Bold vector clock entries show
where ℎ𝑎𝑠𝑅𝑒𝑎𝑑 is true. The red crossed entries of VAS repre-
sent their elimination upon Remove.

Read operations by Update Transactions. Update transactions do

not insert their identifier in the version-access-set of their read keys.

However, upon their first read operation, they still advance their

reading snapshot to be able to observe the accessed object. Subse-

quent read operations will use the same reading snapshot without

updating it.

Lines 11-18 of Alg. 3 show the pseudo code for handling read

operations by an update transaction 𝑇 . The 𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 is deter-

mined as follows. First, the versions that are visible according to

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Javidi Kishi and Palmieri

𝑇 .𝑉𝐶 are selected. From them, the versions produced by concur-

rent transactions with anti-dependency with 𝑇 should be excluded.

However, since the version-access-set cannot be leveraged to pre-

cisely identify anti-dependency relations, as the case of read-only

transactions, we adopt a more conservative condition for version

exclusion, inspired by [23], which over-approximates the existence

of an anti-dependency by just comparing 𝑇 ’s vector clock against

the candidate version’s commit vector clock.

A version should be excluded if it has a vector clock in which,

in all the positions where 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 is true, the value is equal

to the value of the same entry in 𝑇 .𝑉𝐶 (Lines 13-15 of Alg. 3)

and there exist at least one position in 𝑇 .𝑉𝐶 whose corresponding

entry in 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 is false and in the same position the version

vector clock has a greater value than 𝑇 .𝑉𝐶 . The latter clause of

the above condition allows an update transaction to also exclude

a version committed by a concurrent transaction, or a transaction

whose acknowledgment has not been received yet, without an anti-

dependency with𝑇 , which is a false positive case since that version

could be read without compromising PSI.

Key=x,	value=x0

2 7 6

T3:	 Write(x,	x1)
Write(y,	y1)

2 7 7

T1:	 Read(x==x0)

Read(y==y0)

Write(z,	z1)

62T1.VC

Ti
m

e

672T1.VC

5

62T1.VC 7

2 7 62 5 6

Key=x,	
value=x0,x1

Key=y,	value=y0

Key=y,	
value=y0,y1

Key=z,	value=z0

Node N2 Node N3Node N1

Figure 3: Example showing how an update transaction estab-
lishes its reading snapshot.

After that, the version with the highest identifier in the resulting

𝑉𝑖𝑠𝑖𝑏𝑙𝑒𝑆𝑒𝑡 is returned as the result of the read operation (Line 16

of Alg. 3), along with its vector clock.

When the response for 𝑇 ’s read operation is returned to 𝑁𝑖 , an

entry-wise maximum between𝑇 .𝑉𝐶 and the version vector clock is

performed to advance the reading snapshot of 𝑇 (Line 9 of Alg. 2).

Figure 3 shows an example of how update transactions establish

their reading snapshot. We have two update transactions 𝑇1 and

𝑇3. 𝑇1 reads 𝑥0, the latest version of object 𝑥 at its first access to

node 𝑁2 (Line 11- 18 of Alg. 3). At this stage, the ExcludedSet in
Line 14 of Alg. 3 is empty. 𝑇1 then advances its reading snapshot

by updating the second entry of 𝑇1 .𝑉𝐶 to “7” (Line 9 of Alg. 2).

Concurrently 𝑇3 updates both objects 𝑥 and 𝑦, stored on 𝑁2, and

commits by advancing 𝑁2’s vector clock at its third entry to “7”

(Line 21 of Alg. 5).

After that, 𝑇1 performs its second read operation on 𝑦. Here,

𝑇1 cannot read version 𝑦1. This is because 𝑇1 .𝑉𝐶 [2] is equal to
𝑦1.𝑉𝐶 [2] and𝑇1 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [2] is true. In this case, since𝑇1 .𝑉𝐶 [3] is

less than 𝑦1.𝑉𝐶 [3], it might mean that 𝑦1 has been committed by a

concurrent conflicting transaction. In fact the ExcludedSet disallows
𝑇1’s second read operation from accessing version 𝑦1 because 𝑦1
includes timestamp “7” at 𝑦1.𝑉𝐶 [3] (Line 14 of Alg. 3). However,
due to the way vector clocks are incremented upon commit, 𝑇1
does not have enough knowledge to verify if 𝑦1’s committer was

a conflicting transaction. Therefore the read operation returns a

safe snapshot for 𝑇1, which in this case is 𝑦0 because 𝑦0’s vector

clock (i.e., 𝑦0 .𝑉𝐶) is visible by 𝑇1. Note that in this case even if 𝑇3
only updates 𝑦 (which means no conflict between𝑇1 and𝑇3),𝑇1 still

cannot return 𝑦1.

4.4 Commit protocol
The commit phase of transaction𝑇 is performed through the COMMIT
function in Alg. 4. If𝑇 is a read-only transaction, the commit phase

only consists of a clean up step to remove traces of its execution

on the version-access-set of its read versions. To do that, Remove
messages are sent to the nodes where 𝑇 read from (Lines 2-8 of

Alg. 4).

Algorithm 4 Commit of transaction T in node 𝑁𝑖

1: function Commit(Transaction T)

// Check if T is a read-only transaction
2: if (T.writeset=𝜙) then
3: for (𝑘 ∈ 𝑇 .𝑟𝑒𝑎𝑑𝐾𝑒𝑦𝑠) do
4: Send Remove [𝑇 .𝑖𝑑, 𝑘] site(k)
5: end for
6: 𝑇 .𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ← 𝑡𝑟𝑢𝑒
7: return𝑇 .𝑜𝑢𝑡𝑐𝑜𝑚𝑒
8: end if

// Start 2PC if T is an update transaction
9: 𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝐶 ← 𝑇 .𝑉𝐶
10: 𝑇 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ← 𝜙
11: 𝑇 .𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ← 𝑡𝑟𝑢𝑒
12: send Prepare [𝑇] to all 𝑁 𝑗 ∈ 𝑠𝑖𝑡𝑒𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡)
13: for all (𝑁 𝑗 ∈ 𝑠𝑖𝑡𝑒𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡)) do
14: wait receive Vote [𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 𝑗 , 𝑟𝑒𝑠𝑢𝑙𝑡 𝑗] from 𝑁 𝑗 or timeout

// Check if T’s 2PC commit decision is successful
15: if (¬𝑟𝑒𝑠𝑢𝑙𝑡 𝑗 ∨ 𝑡𝑖𝑚𝑒𝑜𝑢𝑡) then
16: 𝑇 .𝑜𝑢𝑡𝑐𝑜𝑚𝑒 ← 𝑓 𝑎𝑙𝑠𝑒
17: break;

18: else
// Collect all existing anti-dependencies in𝑇 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡

19: 𝑇 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ← 𝑇 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ∪ 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 𝑗
20: end if
21: end for
22: 𝑐𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖 ← 𝑐𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖 + 1
23: 𝑇 .𝑠𝑒𝑞𝑁𝑜 ← 𝑐𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖

// Finalize T’s commit vector clock
24: 𝑇 .𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝐶 ← 𝑠𝑖𝑡𝑒𝑉𝐶𝑖
25: 𝑇 .𝑐𝑜𝑚𝑚𝑖𝑡𝑉𝐶 [𝑖] ← 𝑇 .𝑠𝑒𝑞𝑁𝑜

26: send Decide [𝑇,𝑇 .𝑜𝑢𝑡𝑐𝑜𝑚𝑒] to all 𝑁 𝑗 ∈ 𝑠𝑖𝑡𝑒𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡 ∪ 𝑁𝑖)
27: send Propagate [𝑇,𝑇 .𝑠𝑒𝑞𝑁𝑜] asynchronously to all

𝑁 𝑗 ∈ 𝑠𝑖𝑡𝑒𝑠\𝑠𝑖𝑡𝑒𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒)
28: return𝑇 .𝑜𝑢𝑡𝑐𝑜𝑚𝑒
29: end function

If 𝑇 is an update transaction, similar to Walter the Two-Phase

Commit (2PC) protocol is used to accomplish the commit phase and

install new versions into the data repository. The node in which 𝑇

executes (i.e.,𝑇 ’s coordinator) starts the 2PC by sending a Prepare
message to the (preferred) nodes that store the objects written by

𝑇 (Line 12 of Alg. 4). When a 2PC participant node 𝑁𝑖 receives a

Prepare message for 𝑇 , all the written objects by 𝑇 and stored by

𝑁𝑖 are locked. If the locking acquisition succeeds, then versions are

validated to certify that they have not being overwritten meanwhile.

At this point, the existing read-only transactions’ identifiers in

the versions-access-set of 𝑇 ’s written objects are retrieved by the

FW-KV: Improving Read Guarantees in PSI Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

2PC participants and sent back to the 2PC coordinator with the Vote
message (Lines 3-12 of Alg. 5). Once the coordinator receives all the

Vote messages from participants, it merges all the received trans-

actions’ identifiers and include them into 𝑇 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 (Line 19

of Alg. 4).

In the case all participants vote for committing 𝑇 , meaning they

were able to acquire locks on the written objects and validate their

version, then 𝑁𝑖 ’s sequence number (𝐶𝑢𝑟𝑟𝑆𝑒𝑞𝑁𝑜𝑖) is incremented

and the commit vector clock of 𝑇 is established. This vector clock

is then sent along with the Decidemessage to the 2PC participants

(Line 22-26 of Alg. 4).

Algorithm 5 Commit message handlers received by node 𝑁𝑖 for

transaction T issued by node 𝑁 𝑗

1: upon receive Prepare [𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇] from 𝑁 𝑗 do
2: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ← 𝜙

// Check if T passes lock acquisition and validation
3: boolean 𝑟𝑒𝑠𝑢𝑙𝑡 ← 𝑔𝑒𝑡𝐿𝑜𝑐𝑘𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡, 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)

∧𝑣𝑎𝑙𝑖𝑑𝑎𝑡𝑒 (𝑇)
4: if (¬𝑟𝑒𝑠𝑢𝑙𝑡) then
5: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐿𝑜𝑐𝑘𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡, 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)
6: send Vote [𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡] to 𝑁 𝑗

7: else
8: for all 𝑘 ∈ 𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒 do
9: 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ← 𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡 ∪ 𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡
10: end for
11: send Vote [𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡, 𝑟𝑒𝑠𝑢𝑙𝑡] to 𝑁 𝑗

12: end if
13: end
14: upon receive Decide [𝑇,𝑜𝑢𝑡𝑐𝑜𝑚𝑒] from 𝑁 𝑗 do
15: if (𝑜𝑢𝑡𝑐𝑜𝑚𝑒) then
16: wait until 𝑠𝑖𝑡𝑒𝑉𝐶𝑖 [𝑗] = 𝑇 .𝑠𝑒𝑞𝑁𝑜 − 1
17: 𝑢𝑝𝑑𝑎𝑡𝑒 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡, 𝑇 .𝑠𝑒𝑞𝑁𝑜, 𝑗)
18: for all (𝑘 ∈ 𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡) do
19: 𝑘.𝑙𝑎𝑠𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡 ← 𝑘.𝑙𝑎𝑠𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡∪

𝑇 .𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑒𝑑𝑆𝑒𝑡
20: end for
21: 𝑠𝑖𝑡𝑒𝑉𝐶𝑖 [𝑗] ← 𝑇 .𝑠𝑒𝑞𝑁𝑜

22: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐿𝑜𝑐𝑘𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡, 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)
23: else
24: 𝑟𝑒𝑙𝑒𝑎𝑠𝑒𝐿𝑜𝑐𝑘𝑠 (𝑇 .𝑤𝑟𝑖𝑡𝑒𝑠𝑒𝑡, 𝑜𝑤𝑛𝑒𝑟 = 𝑇 .𝑖𝑑)
25: end if
26: end
27: function validate(𝑇𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑇)
28: for all (𝑘 ∈ 𝑇 .𝑤𝑟𝑖𝑡𝑒𝑆𝑒𝑡) do
29: if (𝑘.𝑙𝑎𝑠𝑡𝑉𝑒𝑟𝑠𝑖𝑜𝑛.𝑉𝐶 [𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟𝑆𝑖𝑡𝑒] >

𝑇 .𝑉𝐶 [𝑙𝑎𝑠𝑡𝑈𝑝𝑑𝑎𝑡𝑒𝑟𝑆𝑖𝑡𝑒]) then
30: return false
31: end if
32: end for
33: return true
34: end function

Lines 14-26 of Alg. 5 show the steps taken by a 2PC participant

𝑁𝑖 when it receives the Decide message from the coordinator exe-

cuting on node 𝑁 𝑗 . In order for 𝑁𝑖 to commit 𝑇 , 𝑁𝑖 must wait for

all already decided/propagated transactions by 𝑁 𝑗 . 𝑁𝑖 can easily

detect if this wait condition should occur by looking at the gap

between the node vector clock in position 𝑗 and the commit vector

clock of 𝑇 at position 𝑗 (e.g., 𝑇 .𝑠𝑒𝑞𝑁𝑜). When 𝑇 finally commits,

the 𝑠𝑖𝑡𝑒𝑉𝐶 of each 2PC participant is updated in the 𝑗𝑡ℎ position.

Similar to Walter, after sending the Decide of 𝑇 FW-KV sends

the asynchronous Propagate message to all other nodes in the

system in order to allow them to advance their reading snapshot

with respect to 𝑁𝑖 . Note that, although FW-KV requires Propagate
messages to commit non-local update transactions, it does not abort

these transactions as Walter does due to late delivery of Propagate
messages. In fact, in Walter if a Propagate message from a node

𝑁 𝑗 is not delivered by a node 𝑁𝑖 , a non-local update transaction

from 𝑁𝑖 will repeatedly fail its validation step causing an abort that

will be solved only after receiving the Propagate message.

FW-KV does not abort the update transaction in such a case.

However, although it still needs the Propagate message to be de-

livered in order to finalize the commit, i) it is able to overlap the

transaction execution with the delivery of the Propagate message,

which is likely to arrive meanwhile; and ii) it reduces network
traffic due to saving multiple transaction retries.

Figure 4 pictures an example of an update transaction that can

commit in FM-KW but that would be aborted by Walter due to

reading outdated versions. Transaction 𝑇1 is an update transaction

that starts its execution on node 𝑁1. Upon contacting node 𝑁2 for

reading object 𝑥 , 𝑇1 is able to access 𝑥1, the latest version of 𝑥 . In

order to commit, 𝑇1 performs the steps shown in Lines 1- 12 of

Alg. 5. It is able to successfully pass the validation procedure in

Lines 27- 34 because of the value of 𝑇1 .𝑉𝐶 , which was updated

upon reading 𝑥1 (Line 9 of Alg. 2). Without that update, 𝑇1 would

need to abort, as the case of Walter.

4.5 Handling Asynchronous Messages
Alg. 6 shows how node 𝑁𝑖 handles asynchronous messages, namely

Propagate and Remove. When 𝑁𝑖 receives a Remove message be-

cause a read-only transaction𝑇 committed at node𝑁 𝑗 ,𝑇 ’s identifier

is removed from the version-access-sets of𝑇 ’s read versions whose

preferred site is 𝑁 𝑗 , and from all other version-access-sets in 𝑁 𝑗
in which 𝑇 ’s identifier has been propagated by concurrent update

transactions that committed meanwhile (Lines 5-10 of Alg. 6).

Key=x, value=x0, x0.VC=<2,4>
Key=x, value=x1, x1.VC=<2,7>

2 7

T1: Read(x = x1)

Write(x, x2)

2T1.VC

Ti
m

e

5

2 5

2T1.VC 7

Node N2Node N1

Commit

Key=x, value=x0, x0.VC=<2,4>
Key=x, value=x1, x1.VC=<2,7>
Key=x, value=x2, x2.VC=<3,7>

3 7

Figure 4: Example of saving aborts due to reading fresher
snapshots in update transactions. For the sake of simplicity,
version-access-sets have been omitted. Update of 𝑇1’s vector
clock is shown in bold square.

Upon receiving a Propagatemessage by node 𝑁𝑖 for the commit

of an update transaction𝑇 from node𝑁 𝑗 ,𝑁𝑖 can advance its reading

snapshot with respect to 𝑁 𝑗 to 𝑇 .𝑠𝑒𝑞𝑁𝑜 .

In PSI the outcome of all committed transactions that update

some objects whose preferred site is 𝑁 𝑗 should be observed in the

same order by 𝑁𝑖 . For this reason, 𝑇 should wait for all previously

committed transactions in 𝑁 𝑗 with a lesser sequence number than

𝑇 .𝑠𝑒𝑞 to be received by 𝑁𝑖 (Line 2 of Alg. 6). After that, 𝑠𝑖𝑡𝑒𝑉𝐶 of 𝑁𝑖

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Javidi Kishi and Palmieri

Algorithm 6 Remove & Propagate messages from transaction 𝑇

issued by 𝑁 𝑗 to node 𝑁𝑖

1: upon receive Propagate [𝑇,𝑇 .𝑠𝑒𝑞𝑁𝑜] from 𝑁 𝑗 do
2: wait until 𝑠𝑖𝑡𝑒𝑉𝐶𝑖 [𝑗] = 𝑇 .𝑠𝑒𝑞𝑁𝑜 − 1
3: 𝑠𝑖𝑡𝑒𝑉𝐶𝑖 [𝑗] ← 𝑇 .𝑠𝑒𝑞𝑁𝑜
4: end
5: upon receive Remove [𝑇 .𝑖𝑑, 𝑘] from 𝑁 𝑗 do
6: 𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡 ← 𝑘.𝑣𝑒𝑟𝑠𝑖𝑜𝑛.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡\{𝑇 .𝑖𝑑 }
7: for all (𝑘

′
: 𝑣 ∈ 𝑘′ .𝑣𝑒𝑟𝑠𝑖𝑜𝑛𝑆𝑒𝑡 ∧𝑇 .𝑖𝑑 ∈ 𝑣.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡) do

8: 𝑣.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡 ← 𝑣.𝑎𝑐𝑐𝑒𝑠𝑠𝑆𝑒𝑡\{𝑇 .𝑖𝑑 }
9: end for
10: end

can be updated with 𝑇 .𝑠𝑒𝑞𝑁𝑜 at the 𝑗𝑡ℎ position of 𝑠𝑖𝑡𝑒𝑉𝐶 (Line 3

of Alg. 6).

4.6 Correctness Arguments
We assess the correctness of FW-KV by discussing how our modifi-

cations on top of the Walter distributed concurrency control still

preserve PSI.

The major difference between FW-KV andWalter lies on the fact

that in FW-KV every transaction can read the latest version of its

first accessed object, even if an asynchronous propagate message

has not being delivered yet. Our approach is to focus on the nec-

essary and sufficient condition to assess if an execution satisfies

the Generalized Snapshot Isolation (GSI) correctness level [6]. GSI

generalizes SI by allowing reading snapshots to be arbitrarily old,

but still disallows PSI’s long fork anomaly. Showing the equiva-

lence to GSI is enough since we have already shown that FW-KV

does not eliminate the long fork anomaly of Walter, as discussed in

Section 3.3. Without considering this anomaly, PSI is equivalent to

GSI [6, 28].

For a schedule to be accepted by GSI, if a transaction history has a

cycle, then this cycle includes at least two adjacent anti-dependency

edges in the Directed Serialization Graph [6].

Our correctness discussion shows that as soon as a transaction

detects an anti-dependency with respect to a concurrent update

transaction, a direct dependency, including a transitive one, cannot

occur. This can be achieved by relying on either the content of the

version-access-set (populated through the visible reads technique)

for read-only transactions (Lines 4- 8 of Alg. 3), or the selection of

a safe snapshot for update transactions (Lines 13- 16 of Alg. 3). As a

consequence of this observation, only transactions executions with

two adjacent anti-dependency edges can be committed by FW-KV,

which is needed to satisfy GSI (and PSI by including the long fork

anomaly). In fact, concurrent update transactions that are candidate

to establish a direct dependency are excluded. In our algorithms,

Line 5 of Alg. 3 refers to the case in which a read-only transaction

excludes a concurrent update; while Line 14 of Alg. 3 refers to the

case where an update transaction exclude a concurrent update.

Regarding the reading policy of read-only transactions, since

a transaction 𝑇𝑅𝑂 that reads a version 𝑜𝑣 of object 𝑜 is included

in the version-access-set (Line 8 of Alg. 3) of 𝑜𝑣 , when an update

transaction creates a new version 𝑜𝑣+1, the write-after-read (anti-)

dependency is established and can be detected by any other reading

transaction after that. That means, if a conflicting transaction, di-

rectly or transitively, produces a new version, that version cannot be

returned by any subsequent read operation from𝑇𝑅𝑂 because of the

way the version-access-set is propagated to conflicting transactions,

including those transitive (see Lines 18-20 of Alg. 5). By doing that,

there cannot be a read-only transaction involved in a loop with an

outgoing anti-dependency edge preceded by an incoming direct de-

pendency edge. In the presence of an established anti-dependency,

our concurrency control reads previous versions, which transforms

the above direct dependency into an anti-dependency, as demanded

by PSI.

The argument for an update transaction𝑇 is simpler since it can-

not always attempt to access the latest version of an object. In fact,

after the first read operation, a safe reading snapshot is established

for𝑇 . This safe snapshot is established as follows. After the first read

operation served by node 𝑛, for any subsequent operation requiring

access to a node 𝑠 , with𝑛 ≠ 𝑠 , the following check in Line 14 of Alg. 3

(i.e., ∃𝑠 ∈ 𝑠𝑖𝑡𝑒𝑠 : 𝑇 .ℎ𝑎𝑠𝑅𝑒𝑎𝑑 [𝑠] = 𝑓 𝑎𝑙𝑠𝑒. ∧ 𝑣 .𝑉𝐶 [𝑠] > 𝑇 .𝑉𝐶 [𝑠]}) ex-
cludes the versions 𝑣 for which 𝑉𝐶 [𝑠] has a value greater than

𝑇 .𝑉𝐶 [𝑠]. Such a reading snapshot guarantees that if a concurrent

transaction𝑇 ′ overwrites a read version by𝑇 , since𝑇 ’s vector clock
will be strictly lesser than 𝑇 ′’s vector clock, 𝑇 cannot include that

newer version in its reading snapshot. (Recall that this conservative

rule might produce false conflicts that can unnecessarily order 𝑇

before 𝑇 ′ as mentioned is Section 4.3).

5 EVALUATION STUDY
FW-KV’s distributed concurrency control has been embedded into

an in-memory distributed transactional key-value store. We use

the code base of Walter available at [18] and we modify it to inte-

grate FW-KV’s metadata and reading/writing policy. We recall that

our performance assessment for FW-KV aims at showing how its

algorithmic modifications, which ensure higher level of freshness

than Walter, can still provide comparable performance with respect

to Walter, and retain significant performance improvement over a

serializable distributed concurrency control [16].

We conduct the performance evaluation using two well-known

OLTP benchmarks, YCSB [8] and TPC-C [10], both ported to the

key-value data model. For YCSB, we have two transaction profiles:

update, where two keys are read and written, and read-only trans-

actions, where two keys are accessed. YCSB is configured to use

keys of 4 bytes and values of 12 bytes. TPC-C is a more complex

benchmark that simulates an order-entry environment with several

warehouses. It includes five transaction profiles, three of them are

update transactions and the remaining are read-only transactions.

We configure the benchmarks to explore different runtime sce-

narios. First, YCSB transactions are shorter than TPC-C’s trans-

actions; also, since update transactions in YCSB write the same

keys they read, the final execution is equivalent to an execution in

which the concurrency control ensures Serializability. This is done

to particularly stress the importance of reading a fresh snapshot

for update transactions. In fact, FW-KV will be able to reduce the

number of aborts of update transactions due to outdated reading

snapshot in Walter. On the other hand, TPC-C transactions’ logic

allows for reading and writing different shared objects, showing a

favorable case for Walter since an outdated reading snapshot still

suffices to commit while preserving PSI.

We compare the performance of FW-KV against Walter, which

guarantees PSI, and 2PC-baseline (2PC in the plots), a serializable

FW-KV: Improving Read Guarantees in PSI Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

key-value store where all transactions execute optimistically and

rely on the Two-Phase Commit protocol to commit both update

and read-only transactions, thus without needing multiversioning.

We also included a version of Walter and FW-KV in which the asyn-

chronous propagate messages are intentionally delayed to show

the effect of such an event on the abort rate of update transactions.

In all the experiments there are five application threads (i.e.,

clients) per node injecting transactions in a closed-loop (i.e., a client

issues a new request only when the previous one has returned). In

terms of transaction mix, we evaluate our competitors using 20%

and 50% read-only transactions. We do not include the test with

80% read-only transactions because performance of both Walter

and FW-KV are almost identical using this configuration, especially

when the contention is low. This is expected since most of the al-

gorithmic differences between the two competitors are related to

the propagation of anti-dependency developed with update trans-

actions. If version-access-sets are almost empty, the performance

of read-only transactions in both competitors will be similar.

In both benchmarks, transactions select keys to be accessed using

a uniform distribution, which entails accesses might or might not

be to the local data repository. We do not test the case of a skewed

access distribution to highlight the performance impact of FW-

KV design. In fact, if accesses target local nodes, data freshness is

already guaranteed to be the highest level. In this scenario, FW-KV

performs equally to Walter since no protocol modification has been

made to Walter to improve freshness of local accesses. In terms of

data distribution, keys are evenly distributed across nodes.

As test-bed, we use CloudLab [27], a cloud infrastructure avail-

able to researchers. We selected 20 nodes of type c6320 available

in the Clemson cluster. This type is a physical machine with 28

Intel Haswell CPU-cores and 256GB of RAM. Nodes are intercon-

nected using a 10Gb/s network, which delivers a message in about

20 microseconds without saturation. Considering that, we set the

timeout on lock acquisition to 1 ms. All the results are the average

of 5 trials.

5.1 YCSB
Figure 5 shows throughput (𝑘 transactions committed per second) of

all competitors using YCSB and a total of 50k and 500k shared keys

while increasing the total number of nodes. Recall that more nodes

means more clients injecting transactions in the system, therefore

an increasing level of contention. In all these configurations, the

measured abort rate is below 10% at the highest contention level

(i.e., 50k keys and 20 nodes).

The performance and scalability of FW-KV match Walter’s in

the cases where contention is low, namely up to 10 nodes in all

tested cases and in the 500k configuration. When contention in-

creases (e.g., due to higher number of clients), the gap between

FW-KV and Walter becomes more visible. This is because of two

factors: the additional synchronization steps needed by FW-KV’s

read operations, and the increasing size of version-access-sets (see

Figure 6). Quantifying, for 20% read-only workload the highest gap

measured between FW-KV and Walter is 20% and 16% with 50k and

500k keys, respectively. At 50% read-only workload, the gap is 15%

at 50k keys, and such a gap is annulled at 500k keys.

���� �������
���

���� ��������
���

	
��
�� �������
���

	
��
�� ��������
�����
���
 �������
	���

��
���
 ������
	���

0

20

40

60

80

100

120

140

5 10 15 20

Th
ro
ug

hp
ut
	(K

Tx
s/
se
c)

Number	of	nodes	

(a) 20%

0

20

40

60

80

100

120

140

160

5 10 15 20

Th
ro
ug

hp
ut
	(K

Tx
s/
se
c)

Number	of	nodes	

(b) 50%

Figure 5: Throughput using YCSB and by varying % of read-
only transactions, total keys, and number of nodes.

PSI competitors substantially improve performance over 2PC-

baseline because its read-only transactions undergo an expensive

commit phase using the 2PC protocol, which is skipped by FW-

KV and Walter since their read-only transactions are abort-free.

Achieved speedup of PSI competitors against 2PC-baseline is con-

stantly more than 3x.

As observed earlier, the size of version-access-set impacts the gap

in performance between FW-KV and Walter when the contention

increases. Figure 6 confirms that. In this figurewe report the average

number of collected anti-dependency while an update transaction

in FW-KV undergoes the prepare step of its commit phase. We

explored the configurations with 20%, 50%, and 80% of read-only

transactions, with 50k, 100k, and 500k shared objects.

�

��

��

��

��

���

���

���

���

�� ��� ���

��
�	

��
�	���
����	���

����� �� �
������� ��
������� �

����������

������
���

������	���

Figure 6: Average size of anti-dependency collected by update
transactions in FW-KV during prepare phase for different %
of read-only transactions and keys.

Increasing the percentage of update transactions increases the

number of anti-dependencies. The sharp jump from 80% to 50%

read-only at 50k keys is due to the transitive propagation of those

anti-dependencies. In fact, if an update transaction reads a key

whose version-access-set includes a number of read-only transac-

tion identifiers, this set will be propagated to the version-access-set

of the new written versions of the update transaction upon its

commit.

In Figure 6, we also test the cases of 100k and 500k keys to show

how the size of collected anti-dependencies gradually decreases

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Javidi Kishi and Palmieri

to zero, as with 500k. YCSB transactions are short, therefore the

chance for an anti-dependency to occur at the low contention case,

such as using 500k keys, is low. Figure 6 also helps assessing the

space overhead of FW-KV compared toWalter. The dominant factor

in this case is recording the transactions’ version-access-sets. It is

clear from the figure that unless contention is high (e.g., 50k objects)

and the workload is dominated by update transactions, the version-

access-sets are likely empty or storing very few items. As a result, in

these configurations FW-KV and Walter have comparable storage

cost.

Another conclusion that can be drawn by analyzing the results

of Figure 6 is that transaction latency for read-only workload is

comparable with the one in Walter. In fact, querying and manipulat-

ing version-access-sets might add latency to read-only transactions.

However, under read-only heavy workload and low contention,

version-access-sets are effectively empty, which minimizes FW-

KV’s latency overhead with respect to Walter.

To show the effectiveness of a fresher reading snapshot for read

operations of update transactions, in Figure 7 we measure the abort

rate (of update transactions since read-only transactions cannot

abort) using 20 nodes in case we intentionally delay the asynchro-

nous propagate messages (by 1 ms) in both FW-KV and Walter.

We select 1 ms because, in our testbed it mimics around 5x slow-

down of network delay, which might be due to congestion at high

utilization.

�
��
 �
!�
"�
#�
$�
%�

#� ��� #��

��
��
���

��
��
��

�
�

�����������������

���
��
������#�(� ���
��
�	
�����#�(�
���
��
������ �(� ���
��
�	
����� �(�

������	���
����������

Figure 7: Abort rate using 20 nodes and varying number of
keys while delaying propagate messages.

Without delaying the asynchronous propagate messages, the

abort rate of FW-KV and Walter is comparable, below 10% and

even less in low-contention scenario. Enabling the delay, Walter’s

abort rate is on average twice the one of FW-KV. The reason of

such significant increase for Walter is because update transactions’

reading snapshot in our configuration of YCSB should be the fresh-

est since the same read keys are also written, therefore they need

to be validated. Slowing down the propagate messages forces up-

date transactions in Walter to repeatedly abort before being able to

commit when finally the node’s vector clock is updated. Another

interesting aspect to be observed is that in general the abort rate

does not decrease while the contention decreases at 500k keys. This

is due to the fact that, even if contention is absent, a transaction in

Walter may not be able to read the latest version of a key because

of an outdated node vector clock.

Abort rate increases in Walter and FW-KV compared to the case

where asynchronous messages are not delayed because update

transactions still need to receive the propagate messages in order

to finally commit. While they wait for such a message, they hold

the locks on their written keys. Holding locks for longer increases

the probability of abort.

5.2 TPC-C
TPC-C transactions are much longer than YCSB’s, especially the

read-only ones. Generally, the performance at 50% read-only work-

load is slower than the one at 20%. Because of the hierarchical object

access pattern of TPC-C, the contention in the system is modified

by varying the number of warehouses (the warehouse object sits at

the top of this access hierarchy).

����� ������� ��

	�� ������ ���� �������
����� ������� ��

	�� ������ ���� �������
�������

����

������� ������

0

10

20

30

40

50

60

5 10 15 20

Th
ro
ug

hp
ut
(K
Tx
s/
se
c)

Number	of	nodes

(a) 20%

0
5
10
15
20
25
30
35

5 10 15 20

Th
ro
ug

hp
ut
(K
Tx
s/
se
c)

Number	of	nodes

(b) 50%

Figure 8: Throughput using TPC-C and by varying % of read-
only transactions, the number of warehouses per node (W/n),
and the number of nodes.

Figure 8 shows the results for all competitors varying the num-

ber of nodes and the number of warehouses per node. As opposed

to YCSB benchmark, in TPC-C transactions do not necessarily read

the same keys that they write. This allows an update transaction

to commit even if the reading snapshot is not the freshest. The

consequence of this characteristic is that PSI competitors are much

faster than 2PC-baseline, and both Walter and FW-KV have similar

growing trend. In fact, with 50% read-only transactions, the perfor-

mance of the two PSI competitors is within 5% of each other. At

20% read-only workload, the maximum observed gap is 28%.

Figure 9(a) includes the abort rate measured at 20 nodes deploy-

ing 16 and 32 warehouses per node in the case where the propagate

messages have been intentionally delayed. Without delaying them,

abort rate of Walter and FW-KV is comparable. Walter shows an

average of almost 4x higher abort rate than FW-KV. This is because

of the way the safe snapshot is selected by update transactions in

FW-KV. In fact, according to TPC-C logic, the warehouse is often

the first accessed key, which is guaranteed to be the latest version

by FW-KV’s concurrency control, subsequent accesses to objects

will be likely related to that warehouse. This pattern ensures that all

the objects updated along with that warehouse will be accessed by

reading the latest version. Because of that, FW-KV’s degradation in

abort rate is less than Walter’s. In terms of throughput (not shown

in the plots), results of the delayed version of both FW-KV and

Walter are consistent with the trends observed in Figure 8.

FW-KV: Improving Read Guarantees in PSI Middleware ’21, December 6–10, 2021, Québec city, QC, Canada

�

 �

!�

"�

#�

$�

%�

&�

'�

(�

 % "!

��
��
���

��
��
��

�
�

�����������
��������

���
��
������$�+�
���
��
�	
�����$�+�
���
��
������!�+�
���
��
�	
�����!�+�

�������	���

�����������

(a) Abort rate

�

!

��

�!

��

�!

��

�!

 �

 !

�" ��

��
�

��

��

�

���	����������������

������������!�&

��������������&

���������
�	��
��

���������
�	��
��

(b) Slowdown

Figure 9: Performance of FW-KV and Walter varying the
number of warehouses per node.

Finally, in Figure 9(b) we show the slowdown in throughput be-

tween FW-KV andWalter when we vary the number of warehouses,

using 20 nodes. In TPC-C, every read-only transaction needs to be

added to the read-access-set of the accessed warehouse. As a result,

when the number of warehouses is only 8 per node, contention

is high and the size of read-access-sets increases along with the

number of read-only transactions. Managing large read-access-sets

introduces overhead, which is whywith 8 warehouses, performance

at 20% read-only workload is slightly better than at 50%. The trend

reverses as the number of warehouses increases and contention

decreases.

6 RELATEDWORK
Many distributed transactional repositories providing either SI or

its weaker variants have been proposed in literature; examples

include [1, 5, 12, 13, 25, 28]. Among those, Jessy [1], Clock-SI [12],

Percolator [25], and the Incremental approach [5] will be discussed.

Jessy [1] provides transactions with reading snapshots that can

include causally dependent versions committed after the transac-

tion starting time. Jessy uses per-version dependence vectors. Each

vector reflects all the versions read or written by the transaction

that created that specific version. FW-KV and Jessy both aim at

improving data freshness; however, unlike FW-KV, the amount of

metadata required to support execution can grow significantly. In

fact, if transactions access random objects, the size of each depen-

dence vector becomes comparable to the number of objects in the

system.

Clock-SI [12] provides SI using a loosely synchronized clock

scheme that might lead to unavailability of the reading snapshot

because of skews across distributed clocks, with a consequence low

performance. Google Percolator [25] provides SI using a centralized

source of synchronization to timestamp distributed transactions

for Bigtable [7].

Elnikety et. al in [13] extend SI to replicated databases. It allows

transactions to use local snapshots of the database on each replica

and relaxes the level of data freshness.

The solution in [5] proposed the Incremental Snapshot method

as an efficient solution to implement Distributed Snapshot Isolation.

In this method, a local transaction only interacts with the local

clock to establish the reading snapshot. A non-local transaction

interacts with the remote node to obtain an appropriate reading

snapshot. For validating the remote accesses, a global clock is still

required. The validation requires maintaining the mapping between

each local clock and the global clock.

Among the proposed distributed systems relying on special pur-

pose hardware for synchronization or communication, Spanner [9],

Farm [11] and FaSST [17] can be considered state-of-the-art. Span-

ner [9] relies on TrueTime API which uses a combination of a very

fast dedicated network, GPS, and atomic clocks to provide a fresh

reading snapshot. FaRM [11] and FaSST [17] are distributed comput-

ing platforms which use RDMA to directly access data in a shared

address space, and for fast messaging between the nodes. FW-KV

is designed to not leverage special purpose hardware.

7 CONCLUSION
We presented FW-KV, a distributed concurrency control that im-

proves upon Walter’s PSI concurrency control by increasing the

level of data freshness of read-only transactions. With FW-KV, we

empirically show that is possible to retain the high performance en-

abled by PSI while preventing transactions from reading arbitrarily

old versions, a significant drawback of current state-of-the-art PSI

solutions.

8 ACKNOWLEDGMENTS
Authors would like to thank our shepherd Roy Friedman and the

anonymous reviewers for their insightful comments. We are also

grateful for the feedback received by dePaul Miller. This material is

based upon work supported by the Air Force Office of Scientific Re-

search under award number FA9550-17-1-0367 and by the National

Science Foundation under Grant No. CNS-1814974.

REFERENCES
[1] Masoud Saeida Ardekani, Pierre Sutra, and Marc Shapiro. 2013. Non-monotonic

snapshot isolation: Scalable and strong consistency for geo-replicated transac-

tional systems. In SRDS. 163–172.
[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny.

2012. Workload analysis of a large-scale key-value store. In ACM SIGMET-
RICS/PERFORMANCE Joint International Conference on Measurement and Model-
ing of Computer Systems, SIGMETRICS ’12, London, United Kingdom, June 11-15,
2012, Peter G. Harrison, Martin F. Arlitt, and Giuliano Casale (Eds.). ACM, 53–64.

https://doi.org/10.1145/2254756.2254766

[3] Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick

O’Neil. 1995. A critique of ANSI SQL isolation levels. In ACM SIGMOD Record,

https://doi.org/10.1145/2254756.2254766

Middleware ’21, December 6–10, 2021, Québec city, QC, Canada Javidi Kishi and Palmieri

Vol. 24. ACM, 1–10.

[4] Philip A Bernstein and Nathan Goodman. 1981. Concurrency control in dis-

tributed database systems. Comput. Surveys 13, 2 (1981), 185–221.
[5] Carsten Binnig, Stefan Hildenbrand, Franz Färber, Donald Kossmann, Juchang

Lee, and Norman May. 2014. Distributed snapshot isolation: global transactions

pay globally, local transactions pay locally. The VLDB Journal 23, 6 (2014), 987–
1011.

[6] Andrea Cerone and Alexey Gotsman. 2018. Analysing snapshot isolation. Journal
of the ACM (JACM) 65, 2 (2018), 11.

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C Hsieh, Deborah A Wal-

lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E Gruber. 2008.

Bigtable: A distributed storage system for structured data. ACM Transactions on
Computer Systems (TOCS) 26, 2 (2008), 4.

[8] Brian F. Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell

Sears. 2010. Benchmarking cloud serving systems with YCSB. In SoCC. 143–154.
[9] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, Wilson Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li,

Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher Taylor,

Ruth Wang, and Dale Woodford. 2013. Spanner: Google’s Globally Distributed

Database. ACM Trans. Comput. Syst. 31, 3, Article 8 (Aug. 2013), 8:1–8:22 pages.
[10] Transaction Processing Performance Council. 2010. tpc-c benchmark, revision

5.11.

[11] Aleksandar Dragojević, Dushyanth Narayanan, Miguel Castro, and OrionHodson.

2014. FaRM: Fast remote memory. In USENIX NSDI. 401–414.
[12] Jiaqing Du, Sameh Elnikety, and Willy Zwaenepoel. 2013. Clock-SI: Snapshot

isolation for partitioned data stores using loosely synchronized clocks. In SRDS.
173–184.

[13] Sameh Elnikety, Fernando Pedone, and Willy Zwaenepoel. 2005. Database repli-

cation using generalized snapshot isolation. In SRDS. 73–84.
[14] Alan Fekete, Elizabeth O’Neil, and Patrick O’Neil. 2004. A read-only transaction

anomaly under snapshot isolation. ACM SIGMOD Record 33, 3 (2004), 12–14.

[15] Lisa Glendenning, Ivan Beschastnikh, Arvind Krishnamurthy, and Thomas An-

derson. 2011. Scalable consistency in Scatter. In SOSP. 15–28.
[16] Jim Gray and Leslie Lamport. 2006. Consensus on transaction commit. ACM

Transactions on Database Systems (TODS) 31, 1 (2006), 133–160.
[17] Anuj Kalia, Michael Kaminsky, and David G Andersen. 2016. FaSST: Fast, Scalable

and Simple Distributed Transactions with Two-Sided RDMA Datagram RPCs. In

USENIX OSDI. 185–201.
[18] Masoomeh Javidi Kishi, Sebastiano Peluso, Henry F. Korth, and Roberto Palmieri.

2019. SSS: Scalable Key-Value Store with External Consistent and Abort-free

Read-only Transactions. In ICDCS. 589–600.
[19] Leslie Lamport. 1998. The Part-Time Parliament. ACM Trans. Comput. Syst. 16, 2

(1998), 133–169. https://doi.org/10.1145/279227.279229

[20] Friedemann Mattern et al. 1988. Virtual time and global states of distributed
systems. Citeseer.

[21] Mohamed Mohamedin, Sebastiano Peluso, Masoomeh Javidi Kishi, Ahmed Has-

san, and Roberto Palmieri. 2018. Nemo: NUMA-aware Concurrency Control for

Scalable Transactional Memory. In Proceedings of the 47th International Confer-
ence on Parallel Processing, ICPP 2018, Eugene, OR, USA, August 13-16, 2018. ACM,

38:1–38:10. https://doi.org/10.1145/3225058.3225123

[22] Sebastiano Peluso, Roberto Palmieri, Paolo Romano, Binoy Ravindran, and

Francesco Quaglia. 2015. Disjoint-Access Parallelism: Impossibility, Possibil-

ity, and Cost of Transactional Memory Implementations. In PODC. 217–226.
[23] Sebastiano Peluso, Paolo Romano, and Francesco Quaglia. 2012. SCORe: A

Scalable One-Copy Serializable Partial Replication Protocol. In Middleware 2012.
456–475.

[24] Sebastiano Peluso, Pedro Ruivo, Paolo Romano, Francesco Quaglia, and Luís

Rodrigues. 2016. GMU: Genuine Multiversion Update-Serializable Partial Data

Replication. IEEE Transactions on Parallel and Distributed Systems 27, 10 (2016),
2911–2925.

[25] Daniel Peng and Frank Dabek. 2010. Large-scale incremental processing using

distributed transactions and notifications. (2010).

[26] Maria Pratt and P McElroy. 2001. Oracle9i Replication. White paper, June (2001).
[27] Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing CloudLab: Scien-

tific infrastructure for advancing cloud architectures and applications. ; login::
the magazine of USENIX & SAGE 39, 6 (2014), 36–38.

[28] Yair Sovran, Russell Power, Marcos K Aguilera, and Jinyang Li. 2011. Transac-

tional storage for geo-replicated systems. In SOSP. 385–400.
[29] Kimberly L Tripp. 2005. SQL Server 2005 Beta II Snapshot Isolation. (2005).

[30] Juncheng Yang, Yao Yue, and K. V. Rashmi. 2020. A large scale analysis of

hundreds of in-memory cache clusters at Twitter. In 14th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2020, Virtual Event, November
4-6, 2020. USENIX Association, 191–208. https://www.usenix.org/conference/

osdi20/presentation/yang

https://doi.org/10.1145/279227.279229
https://doi.org/10.1145/3225058.3225123
https://www.usenix.org/conference/osdi20/presentation/yang
https://www.usenix.org/conference/osdi20/presentation/yang

	Abstract
	1 Introduction
	2 Overview, Assumptions and Properties
	2.1 System Model
	2.2 Data Organization
	2.3 Transaction model
	2.4 Freshness Level of Reading Snapshot

	3 Background & Motivation
	3.1 Walter & PSI
	3.2 The Challenge of Updating Reading Snapshot in Walter
	3.3 Data Freshness and the Long Fork Anomaly

	4 FW-KV: Protocol Description
	4.1 Metadata
	4.2 Transactional Begin and Write Operation
	4.3 Transactional Read Operation
	4.4 Commit protocol
	4.5 Handling Asynchronous Messages
	4.6 Correctness Arguments

	5 Evaluation Study
	5.1 YCSB
	5.2 TPC-C

	6 Related Work
	7 Conclusion
	8 Acknowledgments
	References

