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ABSTRACT
Priority queues are a fundamental data structure, and in highly
concurrent software, scalable priority queues are an important
building block. However, they have a fundamental bottleneck when
extracting elements, because of the strict requirement that each
extract() returns the highest priority element. Inmanyworkloads,
this requirement can be relaxed, improving scalability.

We introduce ZMSQ, a scalable relaxed priority queue. It is the
first relaxed priority queue that supports each of the following im-
portant practical features: (i) guaranteed success of extraction when
the queue is nonempty, (ii) blocking of idle consumers, (iii) memory-
safety in non-garbage-collected environments, and (iv) relaxation
accuracy that does not degrade as the thread count increases. In
addition, our experiments show that ZMSQ is competitive with
state-of-the-art prior algorithms, often significantly outperforming
them.
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1 INTRODUCTION
Priority queues are an important data structure for high-performance
scalable systems. However, unlike ordered and unordered maps,
for which there are many known high-performance data struc-
tures [3, 5], scalable priority queues remain elusive. While there
have been several concurrent priority queues in the research litera-
ture [7, 9, 10, 14], they all achieve sub-linear scalability for mixed
workloads. One of the most significant challenges in creating a scal-
able priority queue is its strict sequential specification, which re-
quires each extractMax()1 operation to return the highest-priority
element in the queue. This creates a scalability bottleneck.

Recent works [1, 13, 15] showed that programs can tolerate
when extractMax() returns a high-priority element that is not
the highest-priority element, so long as there is a bound on the
number of consecutive calls to extractMax() that do not return
the highest-priority element. There are two reasons why such a
relaxation is acceptable. First, while a linearizable [6] priority queue

1WLOG, this paper assumes that larger values represent higher priorities.
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guarantees a total order on extractMax() operations, it does not
guarantee ordering between an extractMax() and subsequent use
of the returned value. That is, if Thread T1 extracts element E1,
and then T2 extracts E2, where E1 > E2, programs typically do not
synchronize after the call to extractMax(), and thus T2 may use
E2 beforeT1 uses E1. Second, in many graph algorithms, processing
elements out of order still contributes to the forward progress of
an application [12]. If E2 is processed before E1, then either (a) E1’s
subsequent processing will not invalidate the work done with E2,
or else (b) re-processing E2 will be quick, because some of the total
work on E2 will have been done already. As an example of the
former, consider a priority scheduler for client-submitted jobs: As
long as the customer paying for high priority work is guaranteed
the service-level agreement, it does not matter if other work, for
other customers, occasionally happens first. As an example of the
latter, consider Dijkstra’s single-source shortest path algorithm:
The work done processing elements out of order still advances the
computation toward a solution.

Relaxed priority queues balance a decrease in the accuracy of
extractMax() for an increase in scalability. The most important
design decision involves how to relax the queue. All prior work
makes accuracy a function of the thread count: as the thread count
increases, the likelihood of extractMax() returning the highest-
priority element decreases. Furthermore, prior algorithms do not
support blocking on empty queues and do not guarantee that ex-
tractMax() from a nonempty queue always succeeds in extracting
an element. Many real programs expect to be able to block threads
that are without work [4], and thus cannot use such queues.

In this paper, we introduce ZMSQ, the first relaxed priority queue
that supports the following practical features: guaranteed success
of extraction when the queue is nonempty, the ability to block
consumer threads, memory-safety without depending on automatic
garbage collection, and relaxation accuracy that does not degrade
as the thread count increases.

The ZMSQ algorithm uses several novel techniques, described in
detail in the rest of the paper, to achieve the above features. It uses
a small shared pool of high priority elements for fast extraction,
and periodically replenishes the pool from the main data struc-
ture. The use of a scalable shared pool without any thread-specific
structures enables the algorithm to guarantee that it observes an
empty queue only when indeed there are no elements in the queue.
The shared pool is structured to support optional scalable low-
latency consumer blocking, as well as non-blocking conditional
extraction and/or spin-waiting. The data structures are organized
to be amenable to protection by hazard pointers [11] for memory
safety. The data structures are managed such that a tunable level
of relaxation is maintained (provided the queue contains enough
elements) regardless of the number of threads and regardless of the
input and use patterns.
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2 RELATEDWORK
2.1 Relaxed Priority Queues
The k-LSM priority queue [15] employs thread local log-structured
merge-trees (LSMs) of at most k elements. When the size of a
thread’s local LSM exceeds k , the thread merges its LSM into a
global LSM. ExtractMax() returns the larger key obtained from
the thread-local and the global LSM. This guarantees the key is one
of theTk largest keys, whereT is the number of threads. Since there
is no synchronization on thread-local LSMs, and less contention
on the global LSM, the k-LSM scales linearly for insertions, and
satisfactorily for extractMax(). However, thread local structures
makes it difficult to determine when the queue is empty: if all of
the queue’s items are in T1’s LSM, then calls to extract() by T2
cannot return them. The MultiQueue [13] also employs thread local
queues, and suffers these same problems.

The SprayList [1] represents the relaxed priority queue as a
skiplist, and relaxes the precision of extractMax() by “spraying”
the access to a range of keys at the front of skiplist. The size of the
range available to extractMax() is proportional to T . SprayList
achieves scalability in extractMax() by reducing the contention
on the first node. However, like k-LSM and MultiQueue, SprayList’s
extractMax() becomes increasingly imprecise as the thread count
T increases. To prevent costly synchronization when traversing
the underlying skiplist on insertions and extractions, traversals are
optimistic, and elements are removed from the skiplist lazily. This
necessitates the use of a tracing garbage collector.

2.2 The Mound
The mound [9] is a lock-free concurrent heap implemented as a
binary tree of sorted lists. For every tree node Np with children
Ncl andNcr ,Np .list .head ≥ max(Ncl .list .head,Ncr .list .head). To
insert key k , a thread chooses a random empty leaf, and then does a
binary search on the path from that leaf to the root (NR ), stopping
when it finds a node Nc with parent Np , for which Nc .list .head ≤
k and Np .list .head > k . It then inserts k as the head of Nc .list .
ExtractMax() removes the head from NR ’s list, and then checks if
NR .list .head became smaller than the head of one of its children’s
lists. If so, it swaps the lists of NR and the child with the larger list
head value. The swapping process recurses downward as necessary
to restore invariants in every subtree.

Relaxing the mound invariant at the root could transform the
mound into a relaxed priority queue. However, the mound is ex-
tremely sensitive to the order in which elements are inserted. We
found that after inserting a series of randomly chosen values, the
quality of elements in each list was poor, with the second element
in any node’s list rarely exceeding the first value in either child’s
list. For experiments with a mix of insert and extractMax(), the
average length of lists decreased over time. At the time scale of
real-world workloads, the mound becomes a heap, rendering this
approach to relaxation ineffective.

3 DATA STRUCTURE DESIGN
ZMSQ employs the mound’s structure, but substantially improves
the quality of a node’s data versus the mound. There are two goals:
ensuring each node has many elements, and ensuring the elements

at each node are close in value, so that nodes near the root will have
many elements that are close in priority. ZMSQ also introduces an
explicit mechanism for extracting many operations at once, a new
synchronization strategy, memory safety, and support for blocking
threads when the queue is empty.

3.1 Data Types
We defineTNode as a node in the ZMSQ tree, consisting of a set of
values and a lock . To reduce latency and synchronization, a TNode
caches its set ’smin andmax values, as well as its count of elements,
in atomic variables that are only updated while holding lock .

TNodes are organized as a binary tree. Conceptually, each field
has le f t , riдht , and parent fields. In practice, the ZMSQ nodes field
is an array of arrays ofTNodes. In nodes , the sub-array at position i
stores 2i TNodes. This representation of a binary tree allows binary
searches along the path from any node to the root.

The remaining fields of ZMSQ are lea f Level , batch, tarдetLen,
pool , and poolNext . lea f Level indicates the deepest level of nodes
whose sub-array contains non-null values. batch and tarдetLen are
user-defined parameters: batch sets an upper bound on the number
of elements (in addition to the maximum) that can be produced by
extractPool(), and tarдetLen defines the number of elements to
try and store in eachTNode . A set may hold at most 2 × tarдetLen
elements. pool is a reference to a set of up to batch elements, and
poolNext is an atomic integer.

3.2 The Insertion Algorithm
Our insertion algorithm appears in Listing 1. It aims to achieve
a high number of elements in each TNode’s set . It also seeks to
reduce the range of elements in each set , with an aim of having
most, if not all, of the elements in the set exceed the maximum
elements in the sets of any TNode’s le f t and riдht children.

In the original mound, insert(k) finds a TNode into which it
can insertk as the newmaximumwithout violating any parent/child
invariants. The motivation for this design was to avoid locking.
However, as previously discussed, this strategy can not ensure
that sets have many items. In our initial experiments, we found
that after a few million operations in a mixed workload with an
equal number of insert() and extractMax() operations, where
insert() selected keys based on a normal distribution, the mound
degraded to a regular heap.

To increase set size, when an insert(k) operation selects as
its starting point a leaf that is at least three levels deep, for which
max > k and count < tarдetLen (lines 8-9), ZMSQ inserts k into the
leaf’s set (lines 36-45).When there are many elements in the priority
queue, this ensures that most non-leaf TNodes have tarдetLen
elements in their set, because it is unlikely that a leaf will migrate
upward before it receives many insertions.

When insert(k)must traverse upward (lines 6-7), the insertion
must increase the number of elements at aTNode . In a manner sim-
ilar to mound insertions, the default behavior of ZMSQ insertions
is to find a node N , such that N .max ≤ k ∧ N .parent .max > k
(line 51), and atomically insert k into N ’s set (lines 11-35). Though
generally beneficial, this default strategy can mean that a TNode
has too many elements. In the the pathological case, this can lead
to the entire ZMSQ devolving into a single set. It can also lead to
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Listing 1: Insert
1 function selectPosition(val )
2 while true do
3 level ← leaf Level
4 for attempt ∈ 1 . . . 1 + level2 do
5 slot ← rand () mod 2level
6 if nodes[level ][slot ].max <= val then
7 return ⟨level, slot, false⟩ // insert as max of some ancestor

8 if level > 3 ∧ nodes[level ][slot ].count < tarдetLen then
9 return ⟨level, slot, true ⟩ // insert as non-max of this TNode

10 expandTree(level) // couldn’t find good leaf, so expand tree

11 function regularInsert(level, slot, val )
12 if level = 0 then
13 nodes[level ][slot ].lock .acquire()
14 if val < nodes[level ][slot ].max then
15 nodes[level ][slot ].lock .r elease()
16 return false // Root changed, became poor candidate

17 nodes[level ][slot ].set .inser t (val )
18 nodes[level ][slot ].max ← val
19 nodes[level ][slot ].count ← nodes[level ][slot ].count + 1

else
20 nodes[level − 1][slot/2].lock .acquire() // lock the parent
21 nodes[level ][slot ].lock .acquire()
22 if val ≥ nodes[level − 1][slot/2].max ∨ val <

nodes[level ][slot ].max then
23 nodes[level − 1][slot/2].lock .r elease()
24 nodes[level ][slot ].lock .r elease()
25 return false // Node or parent changed, became poor candidate

// next line may update nodes[level-1][slot/2].min
26 val ← swapValueFromParentOpt(level-1, slot/2, val)

// if val swapped from parent.set, this.min or this.max could change
27 nodes[level ][slot ].set .inser t (val )
28 nodes[level ][slot ].max ←max (nodes[level ][slot ].max, val )
29 nodes[level ][slot ].min ←min(nodes[level ][slot ].min, val )
30 nodes[level ][slot ].count ← nodes[level ][slot ].count + 1
31 nodes[level − 1][slot/2].lock .r elease()
32 if nodes[level ][slot ].count > 2 × tarдetLen then
33 startPruning(level, slot) // recursively distribute from set to children

34 nodes[level ][slot ].lock .r elease()
35 return true

36 function forceInsert(node, val )
37 node .lock .acquire()
38 if val > node .max ∨ node .count > tarдetLen then
39 node .lock .r elease()
40 return false // Could not insert as non-max in node’s set

41 node .set .inser t (val )
42 node .min ←min(node .min, val )
43 node .count ← node .count + 1
44 node .lock .r elease()
45 return true

46 function Insert(val )
47 while true do
48 ⟨level, slot, f orce ⟩ ← selectPosition(val)
49 if f orce ∧ forceInsert(nodes[level][slot], val) then return
50 if ¬f orce then

// Find node root s.t. node .val ≤ val ∧ node .parent .val > val
51 ⟨level, slot ⟩ ← binarySearchPosition(level, slot, val)
52 if regularInsert(level, slot, val) then return

extractPool() returning too many elements, which can result in
too much relaxation. To avoid these problems, when inserting k
into N .set , we also check N .count , and if it becomes more than
twice tarдetLen, we split N ’s set, and then merge the second half
of the set (with smaller elements) into N ’s children (lines 32-33). If
this makes either child’s set too big, we repeat the splitting process
on that child. In our experiments, we found that the split does not
happen frequently when tarдetLen is larger than 16.
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Figure 1: Inserting two nodes with tarдetLen = 3

The top few levels experience themost contention from extract-
Max(). To avoid increasing contention, we do not apply the above
optimization on the top three levels of the tree. Even so, these
changes have the effect of stabilizingTNode .set size. We ran an ex-
periment in which the ZMSQ was initialized with 1M elements and
tarдetLen = 32, and thenwe performed 8M insert()/extractMax()
pairs. After initialization, count varied from 32 to 51 across all non-
leaf nodes. Upon completion of the experiment, the average count
was 32 for all nodes (standard deviation 2.76).

These changes offer three main benefits. First, they reduce the
cost of tree traversals, since the tree is more compact. Especially for
extractMax(), which may need to migrate a set from root to leaf,
this reduces the number of levels by 4–5. Second, less memory is
required, since the number of TNodes is reduced substantially. Fi-
nally, these changes decrease the frequency with which our relaxed
version (batch > 0) of extractMax() touches the root.

In addition to improving the average size of sets, we alsomodified
the insert() algorithm to improve the quality of sets. Suppose
value k is to be added as the maximum in Nc ’s set. We first inspect
its parent’s min: if Nc .parent .min < k , then we insert k into the
parent, and move Np .min into Nc . (Note that k may not be the
smallest element at Np , and Np .min may be smaller than some of
the elements in Nc .) This technique decreases the range of values
in Np , which improves quality. It may increase the range of values
in Nc . However, there will be more opportunity to improve the
quality of the set in Nc in subsequent insertions, since it cannot
satisfy any extractMax() calls until Np satisfies at least two. This
enhancement occurs on line 26.

Figure 1 depicts these two changes to insertion. For reference,
consider the original mound data structure. To insert 86, the original
mound would place it before 80 as the new head of that node’s list.
To insert 68, the original mound would either (a) randomly choose
to start at 57, and make 68 the new head of that list, or (b) randomly
choose to start at 69, which would increase the depth of the mound
and cause 68 to be a child of 69.

In the ZMSQ algorithm, insert(86) would find node 80, but
would also observe that 80’s parent’s set would be more compact
if 79 was replaced with 86. Thus it inserts 86 into the parent’s set
and moves 79 to the set containing 80. Recursive splitting does
not happen in this case, since the length of the set containing
80 is not larger than 2 × tarдetLen. Note that there is no added
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Listing 2: ExtractMax
function extractPool()

1 nodes[0][0].lock .acquire()
2 if nodes[0][0].count = 0 then
3 nodes[0][0].lock .r elease()
4 return ⊥ // Empty root→ empty tree

5 if batch > 0 ∧ poolN ext >= 0 then
6 nodes[0][0].lock .r elease()
7 return false // can’t move from root’s set to non-empty pool

8 while ∃ipool [i] , ⊥ do spin // Wait for lagging consumers to finish
9 val ← nodes[0][0].max

10 nodes[0][0].set .r emove(val )
11 size ←min(batch, nodes[0][0].count − 1)
12 moveToPool(nodes[0][0].set, size)
13 nodes[0][0].count = nodes[0][0].count − size − 1
14 poolSize ← size
15 swapSetDownward(0,0)
16 return val

function extractFromPool()
17 if batch = 0 ∨ poolN ext < 0 then return ⊥
18 index ← poolN ext .fetchSub(1)
19 if index ≥ 0 then
20 val ← pool [index ]
21 pool [index ] ← ⊥
22 return val

23 else return ⊥

function ExtractMax(T &v )
24 while true do
25 val ← extractFromPool()
26 if val = ⊥ then val ← extractPool()
27 if val , ⊥ then return val
28 backoffWait()

synchronization: locks on the nodes holding 87 and 80 were already
required. As long as tarдetLen is not too large, this optimization
improves the accuracy of ZMSQ without a measurable increase in
overhead.

Similarly, insert(68) exhibits a new behavior when it selects
the node containing 69. Sincenode .count < tarдetLen, forceInsert
is used to insert 69 in the set. This helps to reduce the height of the
tree, and also increases the density of sets. We forbid this operation
for the top three levels of the tree, since this optimization may cause
the set to contain a low-priority element.

3.3 Extracting Elements
Pseudocode for extracting elements from the ZMSQ appears in
Listing 2. When batch > 0, extractMax() uses an auxiliary data
structure, pool , whose size is given by poolNext . It decrements
poolNext to get an index . If index ≥ 0, the thread returns the value
at pool[index]. Otherwise, it must replenish the pool. It extracts
n ←min(NR .count ,batch+1) elements from the root, reserving the
largest for itself and placing the remainder into pool in sorted order.
Setting poolNext allows subsequent extractMax() calls to use the
pool, instead of the tree. extractMax() then restores invariants by
recursively trading sets between parents and children, starting at
the root, until every parent’s set’s maximum is greater than the
maximum in either child’s set. Note that whenbatch = 0, the ZMSQ
extractMax() algorithm behaves exactly like the mound, and is
guaranteed to return the largest element in the priority queue.

3.4 Concurrency
In order to achieve scalable concurrency, we require techniques
that can perform each operation atomically (i.e., ensure that no
operation observes the intermediate state of another operation).
At a high level, we place a lock in each TNode , and threads may
not modify aTNode without holding the lock on thatTNode . Note
that threads may read atomic fields of a TNode without holding
the TNode’s lock. Parents are always locked before children.

The insert(k) operation takes several forms. The simplest in-
serts into a non-head position of a leaf. In this case, after reading
N .max and N .count and determining that N has space for k in a
non-head position of its set, the thread locks N and double-checks
N .max and N .count . If either has changed in an unsatisfactory
manner, the insert() restarts. Otherwise, k is added to N ’s set,
N .min is possibly updated, and then the lock is released.

The second form inserts k as the maximum in N while ensuring
N .parent .max remains larger than k . After reading N .max and
N .parent .max , we lock N .parent and N , then double-check that
k ≥ N .max ∧k < N .parent .max . If not, we unlock both nodes and
restart the insert(). Otherwise, we insert k in N .set and update
N .max . Note that if a concurrent insertion reads N .max before it
is updated, there is no danger: if the insertion decides that N is
its target node, it will re-check N .max after locking N . If its key
is smaller than N .max , then completing the insertion will only
increase N .max . If its key is greater than N .max and the operation
traverses upward, changes to N .max are immaterial.

The third form inserts k at N , making N ’s set too large. When
we transfer elements to N ’s children, we must ensure no value v
appears to be “missing” as it moves from N .set . Before unlocking
N , but after splitting N ’s set in half, we lock N ’s children. Then
N can be unlocked, and then the elements added to the children.
Since the children are locked before N is unlocked, no subsequent
extractMax() can see the pre-split state of the child and the post-
split state of N . Likewise, any changes tomax fields during this
process will not interfere with concurrent insert() operations, for
the reasons outlined in the previous paragraph. Once the lock on
N is released, if a child’s set is too large, the process of migrating
the second half of its set downward can be repeated on its children
as needed. In practice, this is rare.

Finally, supposek could be inserted at nodeN , butN .parent .min <
k . As with the second form, we begin by locking N .parent and N .
Then we check N .parent .min. If swapping the minimum into N
and placing k inN .parent would be worthwhile, wemay do so with-
out further concurrency control: inserting into N .parent cannot
change N .parent .max , and the swap has the same safe interaction
with concurrent operations as inserting k into N would have.

Next, consider extractMax() with batch = 0. In this case, we
first lock the root (NR ), remove its largest element, and update
its val . We then lock both children of N before inspecting their
values. This step is essential, or else a concurrent insertion at a
child of N could violate the main invariant. Once both are locked,
we determine either (a) no exchanging of sets is needed, in which
case the operation completes, or (b) the root and one of its children
should be exchanged. In this case, one child is unlocked, the root
and other child exchange sets, the root is unlocked, and then the
invariant repair repeats with the locked child and its children.
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When batch > 0, extractMax() can take two forms. In the first,
it extracts up to batch elements from NR , puts them in pool , and
restores invariants between NR and its children. In the second,
it only operates on the pool. Protecting pool and poolNext with
NR ’s lock does not scale. Instead, to extractMax(), a thread first
atomically decrements poolNext . If the result is not negative, it
is the index of the position in pool whose value can be returned.
Otherwise, the thread locks NR and re-checks that poolNext is
negative. If not, NR is unlocked and the operation retries. If so, the
thread populates pool from NR ’s set (reserving one value for itself),
sets poolNext via an atomic write, restores invariants between NR
and its children, and returns the value it reserved.

3.5 Safe Memory Reclamation
A significant benefit of our algorithm is that it does not require
garbage collection. At any time, the algorithm holds references to
at most three TNodes, or one TNode and the pool . Furthermore,
many of these accesses occur while a TNode is locked. The only
optimistic accesses are (a) to pool , in extractMax(), (b) to pairs
of TNodes, during the traversal phase of insert(), and (c) while
locking TNodes. As a result, we can use two hazard pointers [11]
per thread. (The choice of set implementation may introduce a
requirement for one more hazard pointer.)

For insertions, a traversal must acquire and release hazard point-
ers in a hand-over-hand manner. When extractMax() accesses the
root, it must hold a hazard pointer on the root TNode . However,
when it only accesses pool , no hazard pointer is needed: even if pool
is a reference, the wait on line 8 of Listing 2 ensures that pool will
not be reclaimed while a thread with a non-negative result from
line 18 is accessing it.

3.6 Blocking
While research data structures often let threads spin when there is
no work (i.e., consuming from an empty queue), production systems
face multi-tenancy and pay-for service constraints. If waiting would
be common, vendors and customers prefer that waiting threads
block instead of spin.

We developed a low-latency blocking mechanism, which causes
threads to sleep in extractMax()when the priority queue is empty.
A sketch of the implementation appears in Listing 3. The general
idea is to maintain a circular buffer of futexes (the Linux kernel’s
fast userspace mutex object). Note that by reading the low bit of
futex f from userspace, a thread can determine if there are any
threads sleeping on f .

In our design, two atomic integers count the total number of
insert() and extractMax() operations. They also represent in-
dexes into the circular buffer, representing the next position to sleep
and the next position to wake. Each position in the circular buffer
contains a futex, padded to fill a cache line. To block extractMax()
when the queue is empty, we call our wakeup code after every
insert() and our sleep code before every extractMax(). In the
common case, each call is a single fetch-and-increment. When
threads must modify futexes, the counters disperse threads, so that
there is low contention on an array of futexes, and so that we do
not wake too many threads at once. While the algorithm is general-
purpose, its value derives from the fact that we can quickly and

Listing 3: Blocking algorithm
Data:
f utex [] : Futex [] // an array of futex
ct icket : atomic // id for recording number of extractMax, initially 1
pticket : atomic // id for recording number of insert, initially 1
Num : const // total number of futex
Str ide : const // gap between futex to avoid false sharing

function signalAfterInsert()
1 p ← pticket .fetchAdd(1)
2 loc ← getFutexArrayLoc(p)
3 cur f utex ← f utex [loc]
4 while true do
5 r eady ← p << 1
6 if r eady + 1 < cur f utex then return
7 if f utex [loc].CAS(cur f utex, r eady) then
8 if cur f utex & 1 then
9 futexWake(&f utex [loc])

10 return

11 else cur f utex ← f utex [loc]

function waitBeforeExtractMax()
12 c ← ct icket .fetchAdd(1)
13 if futexIsReady (c) then return
14 loc ← getFutexArrayLoc(c)
15 cur f utex ← f utex [loc]
16 if cur f utex & 1 then futexWait(&f utex [loc], cur f utex )
17 if trySpinBeforeBlock () then return
18 while true do
19 cur f utex ← f utex [loc]
20 if cur f utex & 1 then futexWait(&f utex [loc], cur f utex )
21 else if ¬futexIsReady(c) then
22 blkf utex ← cur f utex + 1
23 if f utex [loc].CAS(cur f utex, blkf utex ) then
24 futexWait(&f utex [loc], blkf utex )

25 else return

accurately check if the queue is empty; otherwise, false waits and
unnecessary system calls could occur.

3.7 Summary of Design Choices and Trade-offs
We conclude this section by briefly reviewing the properties of
ZMSQ, and how they differ from other relaxed priority queues.

Accuracy. We define the accuracy of a relaxed priority queue by
the number of consecutive extractMax() operations that fail to re-
turn the maximum key. In SprayList, the accuracy is based on prob-
abilities that decrease as the number of threads (T ) increases; how-
ever, a thread is guaranteed that repeatedly calling extractMax()
will eventually return the maximum, and will return one of the first
O(Tloд3T ) elements with high probability. However, it is possible
for extractMax() to fail even when the SprayList is not empty. In k-
LSM, ifT threads repeatedly call extractMax(), then the maximum
value will be returned with frequency at least 1/(Tk). However, if
the thread with the maximum in its LSM suspends, then an un-
bounded number of extractMax() operations will fail to return
the maximum, unless some synchronization is added to access per-
thread LSMs. Likewise, if a thread’s LSM is empty, and the global
LSM is empty, then its calls to extractMax() can fail even if other
LSMs are full. In ZMSQ, the accuracy is not dependent on T , but
instead on a tunable parameter batch. This allows the programmer
to choose the relaxation, and the maximum is guaranteed to be
returned with probability 1/batch. This worst case occurs when the
two largest elements (e0 and e1) are at the heads of the root node’s
set and the head of one of its children’s sets. Note that this also
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guarantees that k ×batch calls to extractMax() are guaranteed to
return the top k elements. No similar bound exists for SprayList,
MultiQueue, or k-LSM. Furthermore, extractMax() never fails to
return a value when the queue is nonempty, and if a thread sus-
pends, there is no risk of another thread’s call to extractMax()
failing to find the maximum value.

Sensitivity to Input Pattern. The mound is highly sensitive to
input pattern; the SprayList is unaffected by input pattern. ZMSQ
falls in between: by allowing insertion into non-head positions in
a set, ZMSQ avoids the mound’s worst-case pattern (inserts or-
dered decreasing by value lead to sets of size 1). ZMSQ does have
a worst-case input pattern, where inserts occur in an order such
that, for all nodes N , the non-head elements of a set rooted at node
N are smaller than all values in the sets of N ’s descendent’s. The
randomized selection of a starting point for insertions makes it
difficult to create this pattern. During testing, we randomly gen-
erated priorities to insert, and then calculated the average mean
priority for each TNode; for such a workload, the largest values
were always in the upper levels.

Generality. While our experiments are tailored to compare against
existing systems in the contexts for which they were designed, we
contend that ZMSQ is more general. It does not leak memory, and is
hence correct in languages like C++. Its support of blocking allows
its use in environments where spinning is not permissible. Unlike
nonblocking queues, it can store arbitrary data types without re-
quiring extra indirection, and it does not have high contention
on a single head node, unlike a hypothetical SprayList based on a
blocking skiplist.

4 EVALUATION
In this section, we present the results of a set of microbenchmarks
and applications that measure the performance of ZMSQ. Tests
were performed on a machine with two 2.1GHz Intel Xeon Platinum
8160 processors and 192GB of RAM. Each processor has 24 cores
/ 48 threads. Since the machine has non-uniform memory access
latencies (NUMA) and our algorithms are not NUMA-aware, we
limited experiments to a single processor. The machine ran Red
Hat Linux server 7.4, and we used the GCC 7.2.1 compiler with O3
optimization. All data points were an average of 15 runs. We used
the jemalloc allocator [2]. We considered two implementations of
ZMSQ. The default implementation mirrors the mound, in that it
implements its set as a linked list. Curves labeled “array” implement
set as an unsorted array of maximum size 2 × tarдetLen.

The tarдetLen and batch parameters affect both performance
and accuracy. Recall that tarдetLen represents the target size of the
set in eachTNode ; it affects performance because it limits the value
of batch and influences the frequency with which sets are split.
batch places an upper bound on the number of elements that can be
cached for subsequent extractMax() calls, before an expensive call
to extractPool() is needed. When batch is zero, extractMax()
always returns the largest element; as batch increases, accuracy can
decrease. Our goal in this evaluation is two-fold: to show how these
parameters affect the performance and accuracy of ZMSQ, and also
to provide guidelines for users to choose the best configuration for
their application requirements.

0.0E+00

2.0E+07

4.0E+07

6.0E+07

8.0E+07

1.0E+08

1 2 4 8 16 24 32

Th
ro
ug
hp

ut
	(
op

s/
s)

Threads

Keys	=	0,	Insert	=	100%
lock
trylock	(tas)
trylock	(tatas)

(a) Insert-only benchmark

0.0E+00

2.0E+06

4.0E+06

6.0E+06

8.0E+06

1.0E+07

1.2E+07

1.4E+07

1.6E+07

1 2 4 8 16 24 32

Th
ro
ug
hp

ut
	(
op

s/
s)

Threads

Keys	=	1M,	Insert/ExtractMax	=	1/1

lock
trylock	(tas)
trylock	(tatas)

(b) Mixed benchmark

Figure 2: Influence of trylocks (Higher is better)

4.1 Lock Implementations
insert() makes heavy use of an optimistic read-before-lock pat-
tern, where a thread T optimistically reads TNode .max when se-
lecting the right position to insert a value. These optimistic reads
need to be checked again after the node is locked, and if the check
fails, the lock has to be released and the operation retried. While
correctness requires that we always execute the check, we can
predict its failure: if T attempts to lock N , but N is locked, then
N .max is likely to change before T acquires N .lock , and thus T is
likely to restart its operation. Based on this intuition, it could be
beneficial to use a trylock when acquiring N , and to retry immedi-
ately on trylock failure. Note that retrying insert() will lead to
choosing a different path through the tree, and thus it is unlikely
to re-encounter the same locked node N .

In Figure 2, we run 1M operations on a ZMSQ configured with
batch = 32 and tarдetLen = 32. In Figure 2a, all operations are
inserts, the queue is initially empty, and keys are chosen from a
normal distribution. In Figure 2b, there is an even mix of insert()
and extractMax() operations, and the queue is initialized with
with 1M keys. We compare three locks: the C++ std::mutex, a test-
and-set (TAS) trylock, and a test-and-test-and-set (TATAS) trylock.
The y-axis represents throughput.

In Figure 2a, trylock only performs slightly better than regular
locks. This is because insert() has small critical sections, and
those critical sections rarely touch the same nodes of the tree,
since each insert() chooses a random leaf as its starting point. In
Figure 2b, the impact is more significant. With batch = 32, only 3%
of extractMax() calls access the root, but when they do, they must
lock three nodes, and they often swap sets and recurse downward.
These critical sections are long relative to insert(), and using
trylocks lets conflicting insert() operations give up early and try
from a different starting point. As the queue size decreases, the
performance gap increases (not shown), because insert() is more
likely to access the root. Moreover, the TATAS trylock outperforms
the TAS trylock, because it reduces cache contention on locks.

4.2 batch and targetLen
tarдetLen determines the average set size in each TNode , and
influences the compactness of the tree. batch lower bounds the
frequency with which extractMax() returns the largest value in
the queue, and hence accuracy. It also alleviates contention at the
root among concurrent extractMax() operations. To demonstrate
how batch and tarдetLen work together to affect performance, we
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Figure 3: Influence of batch and tarдetLen (Higher is better)

(a) 1K

Threads / batch 2 4 8 16 32 64
10% ZMSQ 83 71 58 58 60 55

SprayList 100 92 73 46 4 6
50% ZMSQ 470 440 339 314 299 293

SprayList 498 463 405 400 272 224

(b) 64K

Threads / batch 2 4 8 16 32 64
0.1% ZMSQ 58 52 41 38 31 31

SprayList 65 58 34 12 6 2
1% ZMSQ 604 566 409 337 269 168

SprayList 655 649 620 510 500 179
10% ZMSQ 6005 6034 5964 5678 5435 5232

SprayList 6552 6542 6504 6337 6242 5887

Table 1: Accuracy affected by batch for ZMSQ and thread
numbers for SprayList (Higher is better)

present two sets of configurations in Figure 3: the dynamic configu-
ration increases the size of batch and tarдetLen as the thread count
increases, so that the ratio batch/tarдetLen is constant, and the
smaller of the two numbers equals the thread count. For example,
when the thread count is 8, dynamic (1: 1.5) represents batch (8),
targetLen (12). The static configuration keepsbatch and tarдetLen
equal and constant across all thread counts.

With 100% inserts (Figure 3(a)), the mound has 1.76× the perfor-
mance of the best ZMSQ on 2 threads. This highlights the added
overheads that come from ZMSQ’s quality-enhancing modifica-
tions. The benefit of this added cost is not merely in the relaxed
extractMax(): we even see it in the scalability of the 100% insert
workload, where our modifications deliver a shallower tree, denser
lists, and more work at leaves, which all contribute to better scala-
bility. The experiment also shows a tradeoff: when tarдetLen grows,
there are more cache misses when exchanging a value between a
TNode and its parent, due to list traversal. With a tarдetLen of 64
and 96, this hurts performance.

In Figure 3(b), dynamic configurations perform significantly
worse at low thread counts: their tarдetLen values are too small, and
the ZMSQ structure resembles a heap. Small tarдetLen values also
increase latency for both extractMax() and insert(). In contrast,
the static configurations have large tarдetLen values even for small
thread counts. Dynamic (1:1.5) generally performs best among all
dynamic configurations. With profiling, we found that dynamic
(1:1.5) had the highest percentage of full sets. Dynamic(1:2) and
(2:1) tend to perform worse than dynamic(1:1): when tarдetLen »
batch: aTNode’s min is often very small, and remains in theTNode

after a call to extractPool(), causing many recursive swaps. We
also found that when batch » tarдetLen, extractPool() typically
extracts fewer than batch elements.

64 offered the most consistent performance, but 96 offered the
best performance at high thread counts. Reasons include the impact
of tarдetLen on the cost of accessing sets when exchanging ele-
ments between a parent and child during insert(), and the effect of
batch on the frequency of calls to extractPool(). Since the size of
batch matters when there is a high contention for extractMax(),
higher batch values increase in importance as the thread count
increases. We recommend the static (batch=48, tarдetLen=72) con-
figuration as the default setting.

4.3 Accuracy
Next, we measure the accuracy of ZMSQ and compare it with
the SprayList [1], which is considered the current state-of-the-
art in relaxed priority queues. In the experiments, we initialize
each queue with 1K and 64K randomly generated keys without
duplicates. For the 1K sized queues, we execute 102 (10%) and 512
(50%) extractMax() operations, and report the number of returned
keys that are in the top 102 and 512 respectively. For the 64K sized
queue, we execute 65 (0.1%), 655 (1%), and 6553 (10%) extractMax()
operations. For the SprayList, we vary the number of threads, since
the precision of the SprayList depends on the number of threads (i.e.,
with 1 thread, the SprayList is a strict priority queue). For ZMSQ, we
set tarдetLen to 64 and vary batch, because the accuracy depends
exclusively on batch whenever batch ≤ tarдetLen.

Table 1a shows the accuracy test for the small queue size. More
than half of extractMax() operations meet the threshold in ZMSQ
among all configurations. We can see the accuracy decreases as
batch increases. However, the accuracy does not show a significant
change when batch grows beyond 8. The result suggests that ZMSQ
provides high-quality results. Recall that high batch values mean
that an increasing amount of data is being provided by the pool ,
and a decreasing amount is guaranteed to be optimal. Since the
pool is filled with (mostly) high-priority values, the accuracy does
not degrade as batch increases.

In contrast, SprayList accuracy shows a more significant drop-
off, especially when the thread count exceeds 32. This is because
each extractMax() is guaranteed to obtain a key from a region
close to the front of the SprayList. However, the size of the region
is proportional to the thread count. With fewer than 8 threads, the
SprayList has better accuracy than ZMSQ, because the spray strat-
egy guarantees a small region, and every extractMax() returns a
key close to the best key. At 32 threads and beyond, the SprayList
is even worse than a FIFO queue when extracting the top 10% from
a small queue and the top 0.1% from a large queue.

In Table 1b, we consider a larger queue. ZMSQ is competitive
except for the 1% test with batch > 8. This is because of a brief dip
in performance for our technique of improving quality: the first
few additions to the ZMSQ are at shallow depths, for which we do
not apply our accuracy-improving techniques. These TNodes will
have few elements. As insertions increase the depth of the ZMSQ,
some leaf TNodes have the chance to achieve good density, but
they propagate upward quickly, at which point they serve more
extractMax() than their accuracy should permit. This is a transient
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Figure 4: Blocking VS. Spinning latency (Lower is better)

state during initialization, and it passes quickly, so that by the time
10% of the elements have been extracted, elements are usually of
high quality. As future work, we will look into ways to adjust
tarдetLen and batch based on the number of prior operations on
the ZMSQ, to prevent accuracy violations from manifesting during
this brief transitional phase from shallow to deep trees.

In general, the ZMSQ provides competitive accuracy compared
to the SprayList. Neither is likely to degrade to the pessimal per-
formance of a FIFO queue, and both are subject to occasional per-
turbations that lead to one or the other having higher accuracy.
Furthermore, in ZMSQ concurrency does not reduce accuracy, since
small batch sizes can be used even at high thread counts. This should
afford the user more opportunity to tune and balance performance
and accuracy.

4.4 Blocking
Figure 4 shows the impact of blocking strategies for a producer/-
consumer workload. Note that consumers can encounter an empty
queue. We measure the latency of a producer/consumer handoff
and correlate it to the blocking strategy. We show that our futex
design does not hurt performance at low thread counts, and helps
performance at high thread counts and hyperthreading.

Our choice of having consumers outnumber producers is moti-
vated both by the low complexity of insertions in ZMSQ, and also
by common industry practice. We considered 2, 4, and 8 producers
and varied from 2 to 256 consumers. Queue are initially empty, with
batch = 32. Due to limited space, we only show the case with 4
producers, but the other results exhibited the same behavior. Notice,
too, that each socket in our machine contains 24 cores/48 threads,
so both hyperthreading and preemption effects are at play.

Figure 4a shows the latency for each handoff for 1M total hand-
offs. With 4 producers and 4 consumers, the latency for spinning is
133ns, and blocking adds 50ns per handoff. The spinning algorithm
always achieves lower latency when threads do not outnumber
cores. However, at high thread counts (more than 64 consumers),
the latency per handoff with blocking is significantly better.

To further evaluate the efficiency of blocking, we used the time
command in Linux to calculate the CPU execution time for 1M
handoffs. The result is shown in Figure 4b. When the number of
consumers is below 64, blocking uses 1% to 90% more CPU time
than spinning. However, the blocking algorithm reduces the CPU
execution time by more than half for more than 64 consumers. In
addition to these results, it is worth noting that in systems with

indeterminate arrival of new elements, a common case in practi-
cal systems, the savings in CPU usage as a result of supporting
consumer blocking are unbounded.

4.5 Micro-Benchmarks
Next, we compare the performance of the SprayList, Mound, and
ZMSQ. ZMSQ curves labeled “(array)” implement TNode .set as a
fixed-size array. Otherwise, the set is implemented as a singly linked
list. Based on the discussion in Section 4.2, we use batch = 48 and
tarдetLen = 72 for the ZMSQ experiments. The only exception is
the “ZMSQ-BEST” curve. This shows the best performer at each
thread count, from the seven configurations in Figure 3. Additional
discussion of the impact of tuning parameter appears in Section 4.7.

All algorithmswere implemented in C++. However, the SprayList
is not memory-safe: logically deleted nodes can remain reachable
for a long time, and cannot be safely reclaimed without garbage
collection. Therefore, the SprayList always leaks memory in our
experiments. The Mound was designed to use epoch-based recla-
mation, and the implementation we compare against leaks memory.
While our focus is on the memory-safe ZMSQ, we include a result
(“ZMSQ (leak)”) that leaks memory, to assess the impact of memory
management with hazard pointers.

4.5.1 Mixed Push and ExtractMax. We first consider the perfor-
mance of insert() under two scenarios: 100% inserts and 66%
inserts. The throughput is calculated by executing 2M operations
on a queue that is initially empty. SprayList only outperforms ZMSQ
for the benchmark with 66% inserts and with more than 32 threads.
Results appear in Figure 5(a)(b).

With 100% inserts, ZMSQ (array) has the best single thread per-
formance by 17× versus the SprayList, with the memory-safe ZMSQ
56% faster and leaky ZMSQ 3× faster. Like mound, insert is asymp-
totically faster in ZMSQ than in SprayList. Additionally, the array
implementation has little allocation and deallocation, and the ab-
sence of pointer chasing makes set management (e.g., for swapping
an element with its parent during insertion) fast.

In the 66% workloads, the mound suffers, both because it de-
volves into a heap, and because of the cost of recursive cleanup in
extractMax(). Our default (memory-safe) ZMSQ outperforms the
SprayList until roughly the point of hyperthreading (> 24 threads).
The strong performance of ZMSQ (array) derives in part from lo-
cality in extractPool, where the pool can be populated from the
root’s set with a constant number of cache misses.

In these two experiments, the overhead of memory safety can be
seen in the difference between the ZMSQ and ZMSQ (leak) curves.
While it is invalid to conjecture that the difference between these
curves would also manifest as a depression in some hypothetical
memory-safe SprayList, we are nonetheless encouraged: the ZMSQ
is often the best algorithm, despite it offering two features (memory
safety and blocking) that are not present in the SprayList.

Figure 5(c) considers an equalmix of insert() and extractMax()
operations. In addition to the experiment with 20-bit keys in the
figure, we also considered 7-bit keys. With 7-bit keys the relaxed
priority queues are all too shallow to scale. Degradation was worst
for mound, while sustained throughput and accuracy were best for
ZMSQ. For 20-bit keys, ZMSQ scales to the full size of the machine,
but the slope of its scalability changes after 8 threads. When we
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Figure 5: Performance of mixed insert and extractMax (Higher is better)

experimented with different batch and tarдetLen values, we were
able to achieve higher throughput at high thread counts, albeit
at the cost of worse throughput at low thread counts. While it is
possible to dynamically select these values based on thread count,
to do so would merely optimize a microbenchmark. We instead
encourage users to tune these parameters along with the number
of threads, the ratio of insert() to extractMax() operations, and
the amount of non-queue work done by each thread. As before,
ZMSQ (array) has the lowest single-thread overhead, by a factor of
more than 5×, but does not scale as well.

4.5.2 Producer and Consumer Pattern. One of the most important
patterns for a priority queue is a producer/consumer workload. We
ran experiments where dedicated producer (insert()) and con-
sumer (extractMax()) threads accessed a queue that was initially
empty. We varied the producer/consumer ratio, and measured the
time to transfer 1M items from producers to consumers.

Figure 6 shows performance for different ratios of consumers
and producers. ZMSQ has strong performance across all of the
ratios tested, even with precise memory reclamation. This is partly
because ZMSQ extractMax() always returns a value when the
queue is nonempty. In contrast, SprayList extractMax() can re-
turn ⊥ when the queue contains elements. For high thread counts,
SprayList consumers make multiple extractMax() calls just to get
one element from a non-empty queue.

In these experiments, we omitted ZMSQ (array), which was not
significantly different from the list-based ZMSQ: in both cases, the
queue typically has few elements, and thus pools tend to have few
elements. The primary benefit of ZMSQ in these workloads is that
insertion is fast, and thus consumers rarely wait to get data from a
concurrent producer. We also disabled blocking features in these
experiments, since SprayList does not support blocking.

4.6 Single Source Shortest Path
In the above experiments, therewas no penaltywhen extractMax()
returned an item that was not the true maximum value in the queue.
The conjecture behind relaxed priority queues is that realistic work-
loads can tolerate these inaccuracies. To validate this claim, we
repeat experiments proposed by the SprayList authors, in which
a concurrent single source shortest path algorithm is run on real-
world data sets. We consider two graphs from Facebook: Artist
has 50K nodes to process, and Politician has 6K nodes. We use the
same experimental harness as [1]. Based on the optimal result for
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Figure 6: Producer / Consumer pattern (Higher is better)
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the tuning experiment in Section 4.7, ZMSQ used batch = 42 and
tarдetLen = 64. Results appear in Figure 7.

In the Artist workload, all of the queues scale. SprayList offers
slightly better performance with hyperthreading (> 24 threads),
but more variance and higher execution time at low thread counts.
Furthermore, beyond 8 threads, the cost of memory management
for ZMSQ is negligible. As in previous experiments, ZMSQ (array)
has the best performance at low thread counts. However, at higher
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counts the other ZMSQ implementations match it. In contrast, for
Politician, the graph is too small to afford real opportunities for
speedup. All three queue implementations degrade after 16 threads.
However, the lower latency of the ZMSQ implementations leads to
faster execution than SprayList up to 36 threads. For bothworkloads,
the mound performs worse for all but the lowest thread counts:
the precision of its extractMax() operation is not as important as
avoiding locking the root.

4.7 Tuning ZMSQ
Figure 8 considers a larger data set. With 3.8M nodes, the LiveJour-
nal Online Social Network [8] affords the opportunity to observe
the impact of different ⟨batch, tarдetLen⟩ values. We also show the
leaky and array versions of the best performing ZMSQ (⟨42, 64⟩).
The y-axis is logarithmic.

At one thread, memory reclamation overheads cause all but
ZMSQ (leak) and ZMSQ (array) to perform worse than SprayList.
However, at two threads the SprayList performance degrades, be-
cause it ceases to act as a strict priority queue. In contrast, ZMSQ
does not incur any accuracy penalty for adding threads: the ad-
dition of threads only leads to more available processing for the
same amount of relaxation. By 12 threads, ZMSQ is 7× its single-
thread performance, whereas concurrent SprayList does not even
surpass its single-threaded performance until 14 threads. At this
point, there are diminishing returns for ZMSQ, but performance
is relatively stable. SprayList performance does not match ZMSQ
until 36 threads, and never surpasses ZMSQ (array).

The “best” choice of batch and tarдetLen is largely independent
of the thread count, and therefore tuning is straightforward: we
needed to find the a good value for batch, and a good ratio between
batch and tarдetLen. From previous subsections, we knew that
batch = tarдetLenwould result in extractPool() rarely returning
a full pool of batch elements. We also knew that larger batch values
would result in lower accuracy, but better scalability. The seven
curves in the figure were chosen based on an approximation of
how a programmer would refine a search. There are two main
findings. The first is that several choices delivered roughly the same
performance. The second is that choices with good performance
were easy to find. These results suggest that it will be easy for
programmers to find good parameters.

5 CONCLUSIONS AND FUTUREWORK
In this paper, we introduced ZMSQ, a relaxed concurrent priority
queue algorithm with novel techniques that enable it to support
important practical features and deliver robust performance and ac-
curacy. It is capable of scalable low-latency blocking, and guarantees
the success of extraction from nonempty queues. It is memory-safe
without dependence on automatic garbage collection. Its relaxation
accuracy does not degrade with the increase in the number of
threads, and its relaxation performance is robust regardless of input
and use patterns. It scales well without too much relaxation (batch
= 32), and when extractMax() does not return the maximum value,
the returned values are of high priority.

The code for the ZMSQ is available as part of the open-source
Facebook Folly library (as RelaxedConcurrentPriorityQueue). As
future work, we plan to investigate the use of helper threads to
improve the quality of sets in the ZMSQ. We are also looking into
mechanisms that would insert high-priority items directly into the
pool, so that they could be extracted immediately.
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