A Practical, Scalable, Relaxed Priority Queue

Tingzhe Zhou
tz214@lehigh.edu
Lehigh University

Maged Michael
maged.michael@acm.org
Facebook

Michael Spear
spear@cse.lehigh.edu
Lehigh University

ABSTRACT

Priority queues are a fundamental data structure, and in highly concurrent software, scalable priority queues are an important building block. However, they have a fundamental bottleneck when extracting elements, because of the strict requirement that each extract() returns the highest priority element. In many workloads, this requirement can be relaxed, improving scalability.

We introduce ZMSQ, a scalable relaxed priority queue. It is the first relaxed priority queue that supports each of the following important practical features: (i) guaranteed success of extraction when the queue is nonempty, (ii) blocking of idle consumers, (iii) memory-safety in non-garbage-collected environments, and (iv) relaxation accuracy that does not degrade as the thread count increases. In addition, our experiments show that ZMSQ is competitive with state-of-the-art prior algorithms, often significantly outperforming them.

ACM Reference Format:

1 INTRODUCTION

Priority queues are an important data structure for high-performance scalable systems. However, unlike ordered and unordered maps, for which there are many known high-performance data structures [3, 5], scalable priority queues remain elusive. While there have been several concurrent priority queues in the research literature [7, 9, 10, 14], they all achieve sub-linear scalability for mixed workloads. One of the most significant challenges in creating a scalable priority queue is its strict sequential specification, which requires each extractMax() operation to return the highest-priority element in the queue. This creates a scalability bottleneck.

Recent works [1, 13, 15] showed that programs can tolerate when extractMax() returns a high-priority element that is not the highest-priority element, so long as there is a bound on the number of consecutive calls to extractMax() that do not return the highest-priority element. There are two reasons why such a relaxation is acceptable. First, while a linearizable [6] priority queue guarantees a total order on extractMax() operations, it does not guarantee ordering between an extractMax() and subsequent use of the returned value. That is, if Thread T1 extracts element E1, and then T2 extracts E2, where E1 > E2, programs typically do not synchronize after the call to extractMax(), and thus T2 may use E2 before T1 uses E1. Second, in many graph algorithms, processing elements out of order still contributes to the forward progress of an application [12]. If E2 is processed before E1, then either (a) E1’s subsequent processing will not invalidate the work done with E2, or else (b) re-processing E2 will be quick, because some of the total work on E2 will have been done already. As an example of the former, consider a priority scheduler for client-submitted jobs: As long as the customer paying for high priority work is guaranteed the service-level agreement, it does not matter if other work, for other customers, occasionally happens first. As an example of the latter, consider Dijkstra’s single-source shortest path algorithm: The work done processing elements out of order still advances the computation toward a solution.

Relaxed priority queues balance a decrease in the accuracy of extractMax() for an increase in scalability. The most important design decision involves how to relax the queue. All prior work makes accuracy a function of the thread count: as the thread count increases, the likelihood of extractMax() returning the highest-priority element decreases. Furthermore, prior algorithms do not support blocking on empty queues and do not guarantee that extractMax() from a nonempty queue always succeeds in extracting an element. Many real programs expect to be able to block threads that are without work [4], and thus cannot use such queues.

In this paper, we introduce ZMSQ, the first relaxed priority queue that supports the following practical features: guaranteed success of extraction when the queue is nonempty, the ability to block consumer threads, memory-safety without depending on automatic garbage collection, and relaxation accuracy that does not degrade as the thread count increases.

The ZMSQ algorithm uses several novel techniques, described in detail in the rest of the paper, to achieve the above features. It uses a small shared pool of high priority elements for fast extraction, and periodically replenishes the pool from the main data structure. The use of a scalable shared pool without any thread-specific structures enables the algorithm to guarantee that it observes an empty queue only when indeed there are no elements in the queue. The shared pool is structured to support optional scalable low-latency consumer blocking, as well as non-blocking conditional extraction and/or spin-waiting. The data structures are organized to be amenable to protection by hazard pointers [11] for memory safety. The data structures are managed such that a tunable level of relaxation is maintained (provided the queue contains enough elements) regardless of the number of threads and regardless of the input and use patterns.
2 RELATED WORK

2.1 Relaxed Priority Queues

The k-LSM priority queue [15] employs thread local log-structured merge-trees (LSMs) of at most k elements. When the size of a thread’s local LSM exceeds k, the thread merges its LSM into a global LSM. ExtractMax() returns the larger key obtained from the thread-local and the global LSM. This guarantees the key is one of the Tk largest keys, where Tk is the number of threads. Since there is no synchronization on thread-local LSMs, and less contention on the global LSM, the k-LSM scales linearly for insertions, and satisfactorily for ExtractMax(). However, thread local structures makes it difficult to determine when the queue is empty: if all of the queue’s items are in Tk’s LSM, then calls to Extract() by Tk cannot return them. The MultiQueue [13] also employs thread local queues, and suffers these same problems.

The SprayList [1] represents the relaxed priority queue as a skiplist, and relaxes the precision of ExtractMax() by “spraying” the access to a range of keys at the front of skiplist. The size of the range available to ExtractMax() is proportional to T. SprayList achieves scalability in ExtractMax() by reducing the contention on the first node. However, like k-LSM and MultiQueue, SprayList’s ExtractMax() becomes increasingly imprecise as the thread count T increases. To prevent costly synchronization when traversing the underlying skiplist on insertions and extractions, traversals are optimistic, and elements are removed from the skiplist lazily. This necessitates the use of a tracing garbage collector.

2.2 The Mound

The mound [9] is a lock-free concurrent heap implemented as a binary tree of sorted lists. For every tree node Np with children Nc1 and Nc2, Np.list.head ≥ max(Nc1.list.head, Nc2.list.head). To insert key k, a thread chooses a random empty leaf, and then does a binary search on the path from that leaf to the root (Np), stopping when it finds a node Nc with parent Np, for which Nc.list.head ≤ k and Np.list.head > k. It then inserts k as the head of Nc.list. ExtractMax() removes the head from Np’s list, and then checks if Np.list.head became smaller than the head of one of its children’s lists. If so, it swaps the lists of Np and the child with the larger list head value. The swapping process recurses downward as necessary to restore invariants in every subtree.

Relaxing the mound invariant at the root could transform the mound into a relaxed priority queue. However, the mound is extremely sensitive to the order in which elements are inserted. We found that after inserting a series of randomly chosen values, the quality of elements in each list was poor, with the second element in any node’s list rarely exceeding the first value in either child’s list. For experiments with a mix of insert and ExtractMax(), the average length of lists decreased over time. At the time scale of real-world workloads, the mound becomes a heap, rendering this approach to relaxation ineffective.

3 DATA STRUCTURE DESIGN

ZMSQ employs the mound’s structure, but substantially improves the quality of a node’s data versus the mound. There are two goals: ensuring each node has many elements, and ensuring the elements at each node are close in value, so that nodes near the root will have many elements that are close in priority. ZMSQ also introduces an explicit mechanism for extracting many operations at once, a new synchronization strategy, memory safety, and support for blocking threads when the queue is empty.

3.1 Data Types

We define TNode as a node in the ZMSQ tree, consisting of a set of values and a lock. To reduce latency and synchronization, a TNode caches its set’s min and max values, as well as its count of elements, in atomic variables that are only updated while holding lock.

TNodes are organized as a binary tree. Conceptually, each field has left, right, and parent fields. In practice, the ZMSQ nodes field is an array of arrays of TNodes. In nodes, the sub-array at position i stores 2^i TNodes. This representation of a binary tree allows binary searches along the path from any node to the root.

The remaining fields of ZMSQ are leafLevel, batch, targetLen, pool, and poolNext. leafLevel indicates the deepest level of nodes whose sub-array contains non-null values. batch and targetLen are user-defined parameters: batch sets an upper bound on the number of elements (in addition to the maximum) that can be produced by ExtractPool(), and targetLen defines the number of elements to try and store in each TNode. A set may hold at most 2×targetLen elements. pool is a reference to a set of up to batch elements, and poolNext is an atomic integer.

3.2 The Insertion Algorithm

Our insertion algorithm appears in Listing 1. It aims to achieve a high number of elements in each TNode’s set. It also seeks to reduce the range of elements in each set, with an aim of having most, if not all, of the elements in the set exceed the maximum elements in the sets of any TNode’s left and right children.

In the original mound, insert(k) finds a TNode into which it can insert k as the new maximum without violating any parent/child invariants. The motivation for this design was to avoid locking. However, as previously discussed, this strategy can not ensure that sets have many items. In our initial experiments, we found that after a few million operations in a mixed workload with an equal number of insert() and ExtractMax() operations, where insert() selected keys based on a normal distribution, the mound degraded to a regular heap.

To increase set size, when an insert(k) operation selects as its starting point a leaf that is at least three levels deep, for which max > k and count < targetLen (lines 8–9), ZMSQ inserts k into the leaf’s set (lines 36–45). When there are many elements in the priority queue, this ensures that most non-leaf TNodes have targetLen elements in their set, because it is unlikely that a leaf will migrate upward before it receives many insertions.

When insert(k) must traverse upward (lines 6–7), the insertion must increase the number of elements at a TNode. In a manner similar to mound insertions, the default behavior of ZMSQ insertions is to find a node N, such that N.max ≤ k ∧ N.parent.max > k (line 51), and atomically insert k into N’s set (lines 11–35). Though generally beneficial, this default strategy can mean that a TNode has too many elements. In the pathological case, this can lead to the entire ZMSQ devolving into a single set. It can also lead to
A Practical, Scalable, Relaxed Priority Queue

ICPP 2019, August 5–8, 2019, Kyoto, Japan

Listing 1: Insert

```c
1  function selectPosition(val)
2      while true do
3          level ← LeafLevel
4             for attempt ∈ 1...level do
5                          slot ← rand nodel
6                             if nodes[level][slot].max <= val then
7                                return (level, slot, false) // insert as max of some ancestor
8                             if level > 3 ∧ nodes[level][slot].count < targetLen then
9                                return (level, slot, true) // insert as non-max of this TNode
10                           end while
11                           expandTree(level) // couldn’t find good leaf, so expand tree
12      end while
13
14  function regularInsert(level, slot, val)
15      if level = 0 then
16          nodes[level][slot].lock.acquire() // lock the parent
17          nodes[level][slot].lock.acquire() // lock the slot
18          if val < nodes[level][slot].max then
19              nodes[level][slot].set.insert(val)
20              nodes[level][slot].max ← val
21          end if
22          nodes[level][slot].lock.release()
23          return false // Node or parent changed, become poor candidate
24      else
25          nodes[level - 1][slot/2].lock.acquire() // lock the parent
26          nodes[level][slot].lock.acquire() // lock the slot
27          if val ≥ nodes[level - 1][slot/2].max ∨ val < nodes[level][slot].max then
28              nodes[level] ← 1[slot/2].lock.release()
29              nodes[level][slot].lock.release()
30              return false // Node or parent changed, become poor candidate
31          end if
32          nodes[level][slot].lock.release()
33          return false // Node or parent changed, become poor candidate
34      end if
35      end function
36
37  function forcedInsert(node, val)
38      node.lock.acquire()
39      if val > node.max ∨ node.count > targetLen then
40          node.lock.release()
41          return false // Could not insert as non-max in node’s set
42      end if
43      node.set.insert(val)
44      node.min ← min(node.min, val)
45      node.count += 1
46      node.lock.release()
47      return true
48  end function
49
50  function Insert(val)
51      while true do
52          (level, slot, force) ← selectPosition(val)
53          if force ∧ forcedInsert(node, val) then return
54              // Find node not in set, node.val ≤ val ∧ node.parent.val > val
55              (level, slot) ← binarySearchPosition(node, val)
56          else
57              if regularInsert(level, slot, val) then return
```

The top few levels experience the most contention from extractMax(). To avoid increasing contention, we do not apply the above optimization on the top three levels of the tree. Even so, these changes have the effect of stabilizing TNode.size. We ran an experiment in which the ZMSQ was initialized with 1M elements and targetLen = 32, and then we performed 8M insert()|extractMax() pairs. After initialization, count varied from 32 to 51 across all non-leaf nodes. Upon completion of the experiment, the average count was 32 for all nodes (standard deviation 2.76).

These changes offer three main benefits. First, they reduce the cost of tree traversals, since the tree is more compact. Especially for extractMax(), which may need to migrate a set from root to leaf, this reduces the number of levels by 4–5. Second, less memory is required, since the number of TNodes is reduced substantially. Finally, these changes decrease the frequency with which our relaxed version (batch > 0) of extractMax() touches the root.

In addition to improving the average size of sets, we also modified the insert() algorithm to improve the quality of sets. Suppose value k is to be added as the maximum in Nc’s set. We first inspect its parent’s min: if Np.min < k, then we insert k into the parent, and move Np.min into Nc. (Note that k may not be the smallest element at Np, and Np.min may be smaller than some of the elements in Np.) This technique decreases the range of values in Np, which improves quality. It may increase the range of values in Nc. However, there will be more opportunity to improve the quality of the set in Nc in subsequent insertions, since it cannot satisfy any extractMax() calls until Np satisfies at least two. This enhancement occurs on line 26.

Figure 1 depicts these two changes to insertion. For reference, consider the original mound data structure. To insert 86, the original mound would place it before 80 as the new head of that node’s list. To insert 68, the original mound would either (a) randomly choose to start at 57, and make 68 the new head of that list, or (b) randomly choose to start at 69, which would increase the depth of the mound and cause 68 to be a child of 69.

In the ZMSQ algorithm, insert(86) would find node 80, but would also observe that 80’s parent’s set would be more compact if 79 was replaced with 86. Thus it inserts 86 into the parent’s set and moves 79 to the set containing 80. Recursive splitting does not happen in this case, since the length of the set containing 80 is not larger than $2 \times$ targetLen. Note that there is no added

ejectPool() returning too many elements, which can result in too much relaxation. To avoid these problems, when inserting k into N.set, we also check N.count, and if it becomes more than twice targetLen, we split N’s set, and then merge the second half of the set (with smaller elements) into N’s children (lines 32-33). If this makes either child’s set too big, we repeat the splitting process on that child. In our experiments, we found that the split does not happen frequently when targetLen is larger than 16.
Listing 2: ExtractMax

```c
function extractPool()
    if nodes[0][0].lock.acquire() then
        nodes[0][0].lock.release()
        return 0
    if batch > 0 then
        poolNext = poolNext + 1
        nodes[0][0].lock.release()
        if batch > 0 then
            return false // can't move from root's set to non-empty pool
        while 3*pool[0][i] >= # do spin // Wait for lagging consumers to finish
        val ← nodes[0][0].max
        nodes[0][0].set.remove(val)
        size ← min(fetchBatch(), count - 1)
        moveToPool(nodes[0][0].at, size)
        nodes[0][0].count = nodes[0][0].count - size - 1
        poolSize ← size
        swapSetDownward(0, 0)
        return val
    function extractFromPool()
        if batch = 0 or poolNext < 0 then return 0
        index ← poolNext.fetchSub(i)
        if index ≥ 0 then
            val ← pool[index]
            pool[index] ← 0
            return val
        else return 0
    function ExtractMax(T &v)
        while true do
            val ← extractFromPool()
            if val = 0 then val ← extractPool()
            if val = # then return val
            backedWait()
```

synchronization: locks on the nodes holding 87 and 80 were already required. As long as `targetLen` is not too large, this optimization improves the accuracy of ZMSQ without a measurable increase in overhead.

Similarly, `insert(68)` exhibits a new behavior when it selects the node containing 69. Since `node.count < targetLen`, `forceInsert` is used to insert 69 in the set. This helps to reduce the height of the tree, and also increases the density of sets. We forbid this operation for the top three levels of the tree, since this optimization may cause the set to contain a low-priority element.

3.3 Extracting Elements

Pseudocode for extracting elements from the ZMSQ appears in Listing 2. When `batch > 0`, `extractMax()` uses an auxiliary data structure, `pool`, whose size is given by `poolNext`. It decrements `poolNext` to get an `index`. If `index ≥ 0`, the thread returns the value at `pool[index]`. Otherwise, it must replenish the pool. It extracts `n ← min(Ng.count, batch+1)` elements from the root, reserving the largest for itself and placing the remainder into `pool` in sorted order. Setting `poolNext` allows subsequent `extractMax()` calls to use the pool, instead of the tree. `extractMax()` then restores invariants by recursively trading sets between parents and children, starting at the root, until every parent’s set’s maximum is greater than the maximum in either child’s set. Note that when `batch = 0`, the ZMSQ `extractMax()` algorithm behaves exactly like the mound, and is guaranteed to return the largest element in the priority queue.

3.4 Concurrency

In order to achieve scalable concurrency, we require techniques that can perform each operation atomically (i.e., ensure that no operation observes the intermediate state of another operation). At a high level, we place a lock in each `TNode`, and threads may not modify a `TNode` without holding the lock on that `TNode`. Note that threads may read atomic fields of a `TNode` without holding the `TNode`’s lock. Parents are always locked before children.

The `insert(k)` operation takes several forms. The simplest inserts into a non-head position of a leaf. In this case, after reading `N.max` and `N.count` and determining that `N` has space for `k` in a non-head position of its set, the thread locks `N` and double-checks `N.max` and `N.count`. If either has changed in an unsatisfactory manner, the `insert()` restarts. Otherwise, `k` is added to `N`’s set, `N.min` is possibly updated, and then the lock is released.

The second form inserts `k` as the maximum in `N` while ensuring `N.parent.max` remains larger than `k`. After reading `N.max` and `N.parent.max`, we lock `N` and `N`, then double-check that `k ≥ N.max ∧ k < N.parent.max`. If not, we unlock both nodes and restart the `insert()`. Otherwise, we insert `k` in `N.set` and update `N.max`. Note that if a concurrent insertion reads `N.max` before it is updated, there is no danger: if the insertion decides that `N` is its target node, it will re-check `N.max` after locking `N`. If its key is smaller than `N.max`, then the insertion will only increase `N.max`. If its key is greater than `N.max` and the operation traverses upward, changes to `N.max` are immaterial.

The third form inserts `k` at `N`, making `N`’s set too large. When we transfer elements to `N`’s children, we must ensure no value `v` appears to be “missing” as it moves from `N.set`. Before unlocking `N`, but after splitting `N`’s set in half, we lock `N`’s children. Then `N` can be unlocked, and then the elements added to the children. Since the children are locked before `N` is unlocked, no subsequent `extractMax()` can see the pre-split state of the child and the post-split state of `N`. Likewise, any changes to `max` fields during this process will not interfere with concurrent `insert()` operations, for the reasons outlined in the previous paragraph. Once the lock on `N` is released, if a child’s set is too large, the process of migrating the second half of its set downward can be repeated on its children as needed. In practice, this is rare.

Finally, suppose `k` could be inserted at node `N`, but `N.parent.min < k`. As with the second form, we begin by locking `N.parent` and `N`. Then we check `N.parent.min`. If swapping the minimum into `N` and placing `k` in `N.parent` would be worthwhile, we may do so without further concurrency control: inserting into `N.parent` cannot change `N.parent.max`, and the swap has the same safe interaction with concurrent operations as inserting `k` into `N` would have.

Next, consider `extractMax()` with `batch = 0`. In this case, we first lock the root (`N`), remove its largest element, and update its `val`. We then lock both children of `N` before inspecting their values. This step is essential, or else a concurrent insertion at a child of `N` could violate the main invariant. Once both are locked, we determine either (a) no exchanging of sets is needed, in which case the operation completes, or (b) the root and one of its children should be exchanged. In this case, one child is unlocked, the root and other child exchange sets, the root is unlocked, and then the invariant repair repeats with the locked child and its children.
When $batch > 0$, `extractMax()` can take two forms. In the first, it extracts up to $batch$ elements from N_R, puts them in pool, and
restores invariants between N_R and its children. In the second, it only operates on the pool. Protecting pool and $poolNext$ with
N_R’s lock does not scale. Instead, to `extractMax()`, a thread first
atomically decrements $poolNext$. If the result is not negative, it
is the index of the position in pool whose value can be returned.
Otherwise, the thread locks N_R and re-checks that $poolNext$ is
negative. If not, N_R is unlocked and the operation retries. If so, the
thread populates pool from N_R’s set (reserving one value for itself),
sets $poolNext$ via an atomic write, restores invariants between N_R
and its children, and returns the value it reserved.

3.5 Safe Memory Reclamation

A significant benefit of our algorithm is that it does not require
garbage collection. At any time, the algorithm holds references to
at most three T-Nodes, or one T-Node and the pool. Furthermore,
many of these accesses occur while a T-Node is locked. The only
optimistic accesses are (a) to pool, in `extractMax()`, (b) to pairs
of T-Nodes, during the traversal phase of `insert()`, and (c) while
locking T-Nodes. As a result, we can use two hazard pointers [11]
per thread. (The choice of set implementation may introduce a
requirement for one more hazard pointer.)

For insertions, a traversal must acquire and release hazard point-
ers in a hand-over-hand manner. When `extractMax()` accesses the
root, it must hold a hazard pointer on the root T-Node. However,
when it only accesses pool, no hazard pointer is needed: even if pool
is a reference, the wait on line 8 of Listing 2 ensures that pool will
not be reclaimed while a thread with a non-negative result from
line 18 is accessing it.

3.6 Blocking

While research data structures often let threads spin when there is
no work (i.e., consuming from an empty queue), production systems
face multi-tenancy and pay-for service constraints. If waiting would
be common, vendors and customers prefer that waiting threads
block instead of spin.

We developed a low-latency blocking mechanism, which causes
treads to sleep in `extractMax()` when the priority queue is empty.
A sketch of the implementation appears in Listing 3. The general
idea is to maintain a circular buffer of futexes (the Linux kernel’s
fast usurpers mutex object). Note that by reading the low bit of
futex f from usurperspace, a thread can determine if there are any
threads sleeping on f.

In our design, two atomic integers count the total number of
`insert()` and `extractMax()` operations. They also represent in-
dexes into the circular buffer, representing the next position to sleep
and the next position to wake. Each position in the circular buffer
contains a futex, padded to fill a cache line. To block `extractMax()`
when the queue is empty, we call our wakeup code after every
`insert()` and our sleep code before every `extractMax()`. In the
common case, each call is a single fetch-and-increment. When
threads modify futexes, the counters disperse threads, so that there
is low contention on an array of futexes, and so that we do not
wake too many threads at once. While the algorithm is general-
purpose, its value derives from the fact that we can quickly and
accurately check if the queue is empty; otherwise, false waits and
unnecessary system calls could occur.

3.7 Summary of Design Choices and Trade-offs

We conclude this section by briefly reviewing the properties of
ZMSQ, and how they differ from other relaxed priority queues.

Accuracy. We define the accuracy of a relaxed priority queue by
the number of consecutive `extractMax()` operations that fail to re-
turn the maximum key. In SprayList, the accuracy is based on prob-
abilities that decrease as the number of threads (T) increases; how-
ever, a thread is guaranteed that repeatedly calling `extractMax()`
will eventually return the maximum, and will return one of the first
$O(T \log^2 T)$ elements with high probability. However, it is possible
for `extractMax()` to fail even when the SprayList is not empty. In k-
LSM, if T threads repeatedly call `extractMax()`, then the maximum
value will be returned with frequency at least $1/(Tk)$. However, if
the thread with the maximum in its LSM suspends, then an un-
bounded number of `extractMax()` operations will fail to return
the maximum, unless some synchronization is added to access per-
thread LSMs. Likewise, if a thread’s LSM is empty, and the global
LSM is empty, then its calls to `extractMax()` can fail even if other
LSMs are full. In ZMSQ, the accuracy is not dependent on T, but
instead on a tunable parameter $batch$. This allows the programmer
to choose the relaxation, and the maximum is guaranteed to be
returned with probability $1/batch$. This worst case occurs when the
two largest elements (e_0 and e_1) are at the heads of the root node’s
set and the head of one of its children’s sets. Note that this also

Listing 3: Blocking algorithm

```java
function signalAfterInsert
1. p ← pcket.fetchAdd()
2. loc ← axGetLoc()
3. curfutex ← futex[loc]
4. while true do
5. ready ← p < 1
6. if ready < 1 < curfutex then return
7. if futex[loc].CAM(curfutex, ready) then
8. curfutex & 1 then
9. curfutex ← (loc)
10. return
11. else curfutex ← futex[loc]

function waitBeforeExtractMax
12. c ← connection()
13. if futexesReady(i) then return
14. loc ← axGetLoc()
15. curfutex ← futexes[loc]
16. if curfutex & 1 then futexWait(futexes[loc], curfutex)
17. if trySpinBeforeBlock() then return
18. while true do
19. curfutex ← futexes[loc]
20. if curfutex & 1 then futexWait(futexes[loc], curfutex)
21. else if ~futexesReady(i) then
22. blkfutex ← curfutex + 1
23. if futexes[loc].CAM(curfutex, blkfutex) then
24. futexes[futexes[loc], blkfutex]
25. else return
```

guarantees that \(k \times \text{batch} \) calls to \(\text{extractMax()} \) are guaranteed to return the top \(k \) elements. No similar bound exists for SprayList, MultiQueue, or k-LSM. Furthermore, \(\text{extractMax()} \) never fails to return a value when the queue is nonempty, and if a thread suspends, there is no risk of another thread’s call to \(\text{extractMax()} \) failing to find the maximum value.

Sensitivity to Input Pattern. The mound is highly sensitive to input pattern; the SprayList is unaffected by input pattern. ZMSQ falls in between: by allowing insertion into non-head positions in a set, ZMSQ avoids the mound’s worst-case pattern (inserts ordered decreasing by value lead to sets of size 1). ZMSQ does have a worst-case input pattern, where inserts occur in an order such that, for all nodes \(N \), the non-head elements of a set rooted at node \(N \) are smaller than all values in the sets of \(N \)’s descendent’s. The randomized selection of a starting point for insertions makes it difficult to create this pattern. During testing, we randomly generated priorities to insert, and then calculated the average mean priority for each \(T\text{Node} \); for such a workload, the largest values were always in the upper levels.

Generality. While our experiments are tailored to compare against existing systems in the contexts for which they were designed, we contend that ZMSQ is more general. It does not leak memory, and is hence correct in languages like C++. Its support of blocking allows its use in environments where spinning is not permissible. Unlike nonblocking queues, it can store arbitrary data types without requiring extra indirection, and it does not have high contention on a single head node, unlike a hypothetical SprayList based on a blocking skiplist.

4 EVALUATION

In this section, we present the results of a set of microbenchmarks and applications that measure the performance of ZMSQ. Tests were performed on a machine with two 2.1GHz Intel Xeon Platinum 8160 processors and 192GB of RAM. Each processor has 24 cores / 48 threads. Since the machine has non-uniform memory access latencies (NUMA) and our algorithms are not NUMA-aware, we limited experiments to a single processor. The machine ran Red Hat Linux server 7.4, and we used the GCC 7.2.1 compiler with O3 optimization. All data points were an average of 15 runs. We used the jemalloc allocator [2]. We considered two implementations of ZMSQ. The default implementation mirrors the mound, in that it implements its set as a linked list. Curves labeled “array” implement set as an unsorted array of maximum size \(2 \times \text{targetLen} \).

The \(\text{targetLen} \) and \(\text{batch} \) parameters affect both performance and accuracy. Recall that \(\text{targetLen} \) represents the target size of the set in each \(T\text{Node} \); it affects performance because it limits the value of \(\text{batch} \) and influences the frequency with which sets are split. \(\text{batch} \) places an upper bound on the number of elements that can be cached for subsequent \(\text{extractMax()} \) calls, before an expensive call to \(\text{extractPool()} \) is needed. When \(\text{batch} \) is zero, \(\text{extractMax()} \) always returns the largest element; as \(\text{batch} \) increases, accuracy can decrease. Our goal in this evaluation is two-fold: to show how these parameters affect the performance and accuracy of ZMSQ, and also to provide guidelines for users to choose the best configuration for their application requirements.

4.1 Lock Implementations

\(\text{insert()} \) makes heavy use of an optimistic read-before-lock pattern, where a thread \(T \) optimistically reads \(T\text{Node}.\text{max} \) when selecting the right position to insert a value. These optimistic reads need to be checked again after the node is locked, and if the check fails, the lock has to be released and the operation retried. While correctness requires that we always execute the check, we can predict its failure: if \(T \) attempts to lock \(N \), but \(N \) is locked, then \(N.\text{max} \) is likely to change before \(T \) acquires \(N.\text{lock} \), and thus \(T \) is likely to restart its operation. Based on this intuition, it could be beneficial to use a trylock when acquiring \(N.\text{lock} \), and to retry immediately on trylock failure. Note that retrying \(\text{insert()} \) will lead to choosing a different path through the tree, and thus it is unlikely to re-encounter the same locked node \(N \).

In Figure 2, we run 1M operations on a ZMSQ configured with \(\text{batch} = 32 \) and \(\text{targetLen} = 32 \). In Figure 2a, all operations are \(\text{inserts} \), the queue is initially empty, and keys are chosen from a normal distribution. In Figure 2b, there is an even mix of \(\text{insert()} \) and \(\text{extractMax()} \) operations, and the queue is initialized with \(1\text{M} \) keys. We compare three locks: the C++ \text{std::mutex}, a test-and-set (TAS) trylock, and a test-and-test-and-set (TATAS) trylock. The y-axis represents throughput.

In Figure 2a, trylock only performs slightly better than regular locks. This is because \(\text{insert()} \) has small critical sections, and those critical sections rarely touch the same nodes of the tree, since each \(\text{insert()} \) chooses a random leaf as its starting point. In Figure 2b, the impact is more significant. With \(\text{batch} = 32 \), only 3% of \(\text{extractMax()} \) calls access the root, but when they do, they must lock three nodes, and they often swap sets and recurse downward. These critical sections are long relative to \(\text{insert()} \), and to retry immediately on trylock failure. Note that retrying \(\text{insert()} \) will lead to choosing a different path through the tree, and thus it is unlikely to re-encounter the same locked node \(N \).

4.2 \(\text{batch} \) and \(\text{targetLen} \)

\(\text{targetLen} \) determines the average set size in each \(T\text{Node} \), and influences the compactness of the tree. \(\text{batch} \) lower bounds the frequency with which \(\text{extractMax()} \) returns the largest value in the queue, and hence accuracy. It also alleviates contention at the root among concurrent \(\text{extractMax()} \) operations. To demonstrate how \(\text{batch} \) and \(\text{targetLen} \) work together to affect performance, we
present two sets of configurations in Figure 3: the dynamic configuration increases the size of \textit{batch} and \textit{targetLen} as the thread count increases, so that the ratio \textit{batch}/\textit{targetLen} is constant, and the smaller of the two numbers equals the thread count. For example, when the thread count is 8, dynamic (1:1.5) represents \textit{batch} (8), \textit{targetLen} (12). The static configuration keeps \textit{batch} and \textit{targetLen} equal and constant across all thread counts. With 100% inserts (Figure 3(a)), the mounds have 1.76× the performance of the best ZMSQ on 2 threads. This highlights the added overheads that come from ZMSQ’s quality-enhancing modifications. The benefit of this added cost is not merely in the relaxed \textit{extractMax}(), we even see it in the scalability of the \textit{batch} insert workload, where our modifications deliver a shallower tree, denser lists, and more work at leaves, which all contribute to better scalability. The experiment also shows a tradeoff: when \textit{targetLen} grows, there are more cache misses when exchanging a value between a \textit{TNode} and its parent, due to list traversal. With a \textit{targetLen} of 64 and 96, this hurts performance.

In Figure 3(b), dynamic configurations perform significantly worse at low thread counts: their \textit{targetLen} values are too small, and the ZMSQ structure resembles a heap. Small \textit{targetLen} values also increase latency for both \textit{extractMax}() and \textit{insert}(). In contrast, the static configurations have large \textit{targetLen} values even for small thread counts. Dynamic (1:1.5) generally performs best among all dynamic configurations. With profiling, we found that dynamic (1:1.5) had the highest percentage of full sets. Dynamic(1:2) and (2:1) tend to perform worse than dynamic(1:1): when \textit{targetLen} > \textit{batch}, a \textit{TNode}’s min is often very small, and remains in the \textit{TNode} after a call to \textit{extractPool}(), causing many recursive swaps. We also found that when \textit{batch} > \textit{targetLen}, \textit{extractPool}() typically extracts fewer than \textit{batch} elements.

64 offered the most consistent performance, but 96 offered the best performance at high thread counts. Reasons include the impact of \textit{targetLen} on the cost of accessing sets when exchanging elements between a parent and child during \textit{insert}(), and the effect of \textit{batch} on the frequency of calls to \textit{extractPool}(). Since the size of \textit{batch} matters when there is a high contention for \textit{extractMax}(), higher \textit{batch} values increase in importance as the thread count increases. We recommend the static (\textit{batch}=48, \textit{targetLen}=72) configuration as the default setting.

4.3 Accuracy

Next, we measure the accuracy of ZMSQ and compare it with the SprayList [1], which is considered the current state-of-the-art in relaxed priority queues. In the experiments, we initialize each queue with 1K and 64K randomly generated keys without duplicates. For the 1K sized queues, we execute 102 (10%) and 512 (50%) \textit{extractMax}() operations, and report the number of returned keys that are in the top 102 and 512 respectively. For the 64K sized queue, we execute 65 (0.1%), 655 (1%), and 6553 (1%) \textit{extractMax}() operations. For the SprayList, we vary the number of threads, since the precision of the SprayList depends on the number of threads (i.e., with 1 thread, the SprayList is a strict priority queue). For ZMSQ, we set \textit{targetLen} to 64 and vary \textit{batch}, because the accuracy depends exclusively on \textit{batch} whenever \textit{batch} ≤ \textit{targetLen}.

Table 1a shows the accuracy test for the small queue size. More than half of \textit{extractMax}() operations meet the threshold in ZMSQ among all configurations. We can see the accuracy decreases as \textit{batch} increases. However, the accuracy does not show a significant change when \textit{batch} grows beyond 8. The result suggests that ZMSQ provides high-quality results. Recall that high \textit{batch} values mean that an increasing amount of data is being provided by the pool, and a decreasing amount is guaranteed to be optimal. Since the pool is filled with (mostly) high-priority values, the accuracy does not degrade as \textit{batch} increases.

In contrast, SprayList accuracy shows a more significant drop-off, especially when the thread count exceeds 32. This is because each \textit{extractMax}() is guaranteed to obtain a key from a region close to the front of the SprayList. However, the size of the region is proportional to the thread count. With fewer than 8 threads, the SprayList has better accuracy than ZMSQ, because the spray strategy guarantees a small region, and every \textit{extractMax}() returns a key close to the best key. At 32 threads and beyond, the SprayList is even worse than a FIFO queue when extracting the top 10% from a small queue and the top 0.1% from a large queue.

In Table 1b, we consider a larger queue. ZMSQ is competitive except for the 1% test with \textit{batch} > 8. This is because of a brief dip in performance for our technique of improving quality: the first few additions to the ZMSQ are at shallow depths, for which we do not apply our accuracy-improving techniques. These \textit{TNodes} will have few elements. As insertions increase the depth of the ZMSQ, some leaf \textit{TNodes} have the chance to achieve good density, but they propagate upward quickly, at which point they serve more \textit{extractMax}() than their accuracy should permit. This is a transient...
state during initialization, and it passes quickly, so that by the time 10% of the elements have been extracted, elements are usually of high quality. As future work, we will look into ways to adjust `targetLen` and `batch` based on the number of prior operations on the ZMSQ, to prevent accuracy violations from manifesting during this brief transitional phase from shallow to deep trees.

In general, the ZMSQ provides competitive accuracy compared to the SprayList. Neither is likely to degrade to the pessimal performance of a FIFO queue, and both are subject to occasional perturbations that lead to one or the other having higher accuracy. Furthermore, in ZMSQ concurrency does not reduce accuracy, since small batch sizes can be used even at high thread counts. This should afford the user more opportunity to tune and balance performance and accuracy.

4.4 Blocking

Figure 4 shows the impact of blocking strategies for a producer/consumer workload. Note that consumers can encounter an empty queue. We measure the latency of a producer/consumer handoff and correlate it to the blocking strategy. We show that our futex design does not hurt performance at low thread counts, and helps performance at high thread counts and hyperthreading.

Our choice of having consumers outnumber producers is motivated both by the low complexity of insertions in ZMSQ, and also by common industry practice. We considered 2, 4, and 8 producers and varied from 2 to 256 consumers. Queue are initially empty, with `batch` = 32. Due to limited space, we only show the case with 4 producers, but the other results exhibited the same behavior. Notice, too, that each socket in our machine contains 24 cores/48 threads, so both hyperthreading and preemption effects are at play.

Figure 4a shows the latency for each handoff for 1M total handoffs. With 4 producers and 4 consumers, the latency for spinning is 133ns, and blocking adds 50ns per handoff. The spinning algorithm always achieves lower latency when threads do not outnumber cores. However, at high thread counts (more than 64 consumers), the latency per handoff with blocking is significantly better.

To further evaluate the efficiency of blocking, we used the `time` command in Linux to calculate the CPU execution time for 1M handoffs. The result is shown in Figure 4b. When the number of consumers is below 64, blocking uses 1% to 90% more CPU time than spinning. However, the blocking algorithm reduces the CPU execution time by more than half for more than 64 consumers. In addition to these results, it is worth noting that in systems with indeterminate arrival of new elements, a common case in practical systems, the savings in CPU usage as a result of supporting consumer blocking are unbounded.

4.5 Micro-Benchmarks

Next, we compare the performance of the SprayList, Mound, and ZMSQ. ZMSQ curves labeled “(array)” implement `TNode.set` as a fixed-size array. Otherwise, the set is implemented as a singly linked list. Based on the discussion in Section 4.2, we use `batch` = 48 and `targetLen` = 72 for the ZMSQ experiments. The only exception is the “ZMSQ-BEST” curve. This shows the best performer at each thread count, from the seven configurations in Figure 3. Additional discussion of the impact of tuning parameter appears in Section 4.7.

All algorithms were implemented in C++. However, the SprayList is not memory-safe: logically deleted nodes can remain reachable for a long time, and cannot be safely reclaimed without garbage collection. Therefore, the SprayList always leaks memory in our experiments. The Mound was designed to use epoch-based reclamation, and the implementation we compare against leaks memory. While our focus is on the memory-safe ZMSQ, we include a result (“ZMSQ (leak)” that leaks memory, to assess the impact of memory management with hazard pointers.

4.5.1 Mixed Push and ExtractMax

We first consider the performance of `insert()` under two scenarios: 100% inserts and 66% inserts. The throughput is calculated by executing 2M operations on a queue that is initially empty. SprayList only outperforms ZMSQ for the benchmark with 66% inserts and with more than 32 threads. Results appear in Figure 5(a)(b).

With 100% inserts, ZMSQ (array) has the best single thread performance by 17x versus the SprayList, with the memory-safe ZMSQ 56% faster and leaky ZMSQ 3x faster. Like mound, `insert` is asymptotically faster in ZMSQ than in SprayList. Additionally, the array implementation has little allocation and deallocation, and the absence of pointer chasing makes swap-set management (e.g., for swapping an element with its parent during insertion) fast.

In the 66% workloads, the mound suffers, both because it devolves into a heap, and because of the cost of recursive cleanup in `extractMax()`. Our default (memory-safe) ZMSQ outperforms the SprayList until roughly the point of hyperthreading (> 24 threads). The strong performance of ZMSQ (array) derives in part from locality in `extractPool`, where the `pool` can be populated from the root’s `set` with a constant number of cache misses.

In these two experiments, the overhead of memory safety can be seen in the difference between the ZMSQ and ZMSQ (leak) curves. While it is invalid to conjecture that the difference between these curves would also manifest as a depression in some hypothetical memory-safe SprayList, we are nonetheless encouraged: the ZMSQ is often the best algorithm, despite it offering two features (memory safety and blocking) that are not present in the SprayList.

Figure 5(c) considers an equal mix of `insert()` and `extractMax()` operations. In addition to the experiment with 20-bit keys in the figure, we also considered 7-bit keys. With 7-bit keys the relaxed priority queues are all too shallow to scale. Degradation was worst for mound, while sustained throughput and accuracy were best for ZMSQ. For 20-bit keys, ZMSQ scales to the full size of the machine, but the slope of its scalability changes after 8 threads. When we
experimented with different batch and targetLen values, we were able to achieve higher throughput at high thread counts, albeit at the cost of worse throughput at low thread counts. While it is possible to dynamically select these values based on thread count, to do so would merely optimize a microbenchmark. We instead encourage users to tune these parameters along with the number of threads, the ratio of insert() to extractMax() operations, and the amount of non-queue work done by each thread. As before, ZMSQ (array) has the lowest single-thread overhead, by a factor of more than 5×, but does not scale as well.

4.5.2 Producer and Consumer Pattern. One of the most important patterns for a priority queue is a producer/consumer workload. We ran experiments where dedicated producer (insert()) and consumer (extractMax()) threads accessed a queue that was initially empty. We varied the producer/consumer ratio, and measured the time to transfer 1M items from producers to consumers.

Figure 6 shows performance for different ratios of consumers and producers. ZMSQ has strong performance across all of the ratios tested, even with precise memory reclamation. This is partly because ZMSQ extractMax() always returns a value when the queue is nonempty. In contrast, SprayList extractMax() can return ⊥ when the queue contains elements. For high thread counts, SprayList consumers make multiple extractMax() calls just to get one element from a non-empty queue.

In these experiments, we omitted ZMSQ (array), which was not significantly different from the list-based ZMSQ: in both cases, the queue typically has few elements, and thus pools tend to have few elements. The primary benefit of ZMSQ in these workloads is that insertion is fast, and thus consumers rarely wait to get data from a concurrent producer. We also disabled blocking features in these experiments, since SprayList does not support blocking.

4.6 Single Source Shortest Path

In the above experiments, there was no penalty when extractMax() returned an item that was not the true maximum value in the queue. The conjecture behind relaxed priority queues is that realistic workloads can tolerate these inaccuracies. To validate this claim, we repeat experiments proposed by the SprayList authors, in which a concurrent single source shortest path algorithm is run on real-world data sets. We consider two graphs from Facebook: Artist has 50K nodes to process, and Politician has 6K nodes. We use the same experimental harness as [1]. Based on the optimal result for

the tuning experiment in Section 4.7, ZMSQ used batch = 42 and targetLen = 64. Results appear in Figure 7.

In the Artist workload, all of the queue scale. SprayList offers slightly better performance with hyperthreading (> 24 threads), but more variance and higher execution time at low thread counts. Furthermore, beyond 8 threads, the cost of memory management for ZMSQ is negligible. As in previous experiments, ZMSQ (array) has the best performance at low thread counts. However, at higher
counts the other ZMSQ implementations match it. In contrast, for Politician, the graph is too small to afford real opportunities for speedup. All three queue implementations degrade after 16 threads. However, the lower latency of the ZMSQ implementations leads to faster execution than SprayList up to 36 threads. For both workloads, the mound performs worse for all but the lowest thread counts: the precision of its extractMax() operation is not as important as avoiding locking the root.

4.7 Tuning ZMSQ

Figure 8 considers a larger data set. With 3.8M nodes, the LiveJournal Online Social Network [8] affords the opportunity to observe the impact of different \((batch, targetLen)\) values. We also show the leaky and array versions of the best performing ZMSQ (\((42, 64)\)). The y-axis is logarithmic.

At one thread, memory reclamation overheads cause all but ZMSQ (leak) and ZMSQ (array) to perform worse than SprayList. However, at two threads the SprayList performance degrades, because it ceases to act as a strict priority queue. In contrast, ZMSQ does not incur any accuracy penalty for adding threads: the addition of threads only leads to more available processing for the same amount of relaxation. By 12 threads, ZMSQ is \(7 \times \) its single-thread performance, whereas concurrent SprayList does not even surpass its single-threaded performance until 14 threads. At this point, there are diminishing returns for ZMSQ, but performance is relatively stable. SprayList performance does not match ZMSQ until 36 threads, and never surpasses ZMSQ (array).

The “best” choice of \(batch\) and \(targetLen\) is largely independent of the thread count, and therefore tuning is straightforward: we needed to find the a good value for \(batch\), and a good ratio between \(batch\) and \(targetLen\). From previous subsections, we knew that \(batch = targetLen\) would result in extractPool() rarely returning a full pool of \(batch\) elements. We also knew that larger \(batch\) values would result in lower accuracy, but better scalability. The seven curves in the figure were chosen based on an approximation of how a programmer would refine a search. There are two main findings. The first is that several choices delivered roughly the same performance. The second is that choices with good performance were easy to find. These results suggest that it will be easy for programmers to find good parameters.

5 CONCLUSIONS AND FUTURE WORK

In this paper, we introduced ZMSQ, a relaxed concurrent priority queue algorithm with novel techniques that enable it to support important practical features and deliver robust performance and accuracy. It is capable of scalable low-latency blocking, and guarantees the success of extraction from nonempty queues. It is memory-safe without dependence on automatic garbage collection. Its relaxation accuracy does not degrade with the increase in the number of threads, and its relaxation performance is robust regardless of input and use patterns. It scales well without too much relaxation (batch = 32), and when extractMax() does not return the maximum value, the returned values are of high priority.

The code for the ZMSQ is available as part of the open-source Facebook Folly library (as RelaxedConcurrentPriorityQueue). As future work, we plan to investigate the use of helper threads to improve the quality of sets in the ZMSQ. We are also looking into mechanisms that would insert high-priority items directly into the pool, so that they could be extracted immediately.

ACKNOWLEDGMENTS

We thank Dave Watson for his advice and guidance during the conduct of this research. This work was supported by the NSF under Grant CAREER-1253362. Any opinions, findings, and conclusions expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation.

REFERENCES