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ABSTRACT
This paper introduces MEDS, a modular and elastic framework
that simpli�es the development of high-performance concurrent
data structures that support linearizable primitive (i.e., add, remove,
contains) and bulk (e.g., range query) operations.
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1 INTRODUCTION
High-performance concurrent data structures are complex to de-
sign, develop and prove to be correct [5, 6]. The recent growing
interest for (linearizable) bulk operations, such as range queries [1],
exacerbates such complexity even further. Theoretical frameworks
have been proposed to ease the process of proving safety of con-
current data structures but these frameworks either lack support
for bulk operations or have assumptions that might hamper their
practical deployment (e.g., single writer assumption [4, 6]).

Automated generation of data structure implementations is a
recent trend that simpli�es the development of concurrent data
structures. With this technique, programmers are required to only
provide an e�cient sequential implementation of the data structure
and the framework is responsible for allowing concurrent accesses
to this sequential implementation, without giving up performance.
Existing solutions (e.g., Node Replication [2]) take conservative
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design choices that mostly �t data structures with con�icting se-
mantics (e.g., Queues), but might perform poorly in other data
structures, such as Sets or Maps. Also, these solutions are not de-
signed to support highly concurrent bulk operations.

In this paper, we introduce MEDS, a framework to develop Mod-
ular and Elastic concurrent Data Structures that implement a Set
abstract data type interface. The modularity property is provided by
designing the MEDS data structure as a composition of elemental,
plug-and-play, building blocks whose integration is given by the
MEDS framework. The core building block for MEDS is a sequen-
tial data structure implementing an ordered Set that supports a
sequential version of both elemental and range query operations.
The elasticity property allows MEDS data structures to recon�g-
ure the way the building blocks are composed in order to chase a
performance-e�ective con�guration that favors the current appli-
cation workload mix, contention level, and number of threads.

MEDS provides a solution to the open problem of re-engineering
a highly optimized sequential data structure (e.g., handcrafted to
exploit some application speci�c characteristics) to be concurrent,
without losing optimization. MEDS does so by treating the sequen-
tial data structure as a black-box, allowing programmers to select
the most appropriate version for the target application.

2 THE MEDS DESIGN
Figure 1 shows the MEDS architecture. MEDS uses the elemental
building block given by a programmer to build a data layer com-
posed of a set of partitions, each of which stores elements belonging
to a certain contiguous range of the total keys currently maintained
in the data structure. Ranges of di�erent partitions are disjoint.

An application thread invokes a primitive operation on a key
K using the MEDS Set APIs, extended to support bulk operations.
Control passes through a routing layer whose goal is to select the
partition responsible for storing K . Partitions access is orchestrated
by a synchronization layer that implements Single-Writer/Multiple-
Readers (SWMR) semantics in order to prevent multiple writers
from modifying the same partition, concurrently. In the absence
of readers or bulk operation, writers on di�erent partitions pro-
ceed concurrently. A bulk operation, such as a range query where
an atomic snapshot of the data structure is returned, is handled
similarly except that the synchronization layer must coordinate ac-
tivities over multiple partitions (e.g., using Two-Phase Locking [5]).

A key design choice of MEDS data structures is that partitions
are not statically de�ned; instead, elements in one partition can be
split into two partitions, and multiple contiguous partitions can
be merged into a single one. This capability enables the elasticity
property of MEDS data structures. Elasticity is needed for high
performance since bulk operations and primitive operations both
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Figure 1: The MEDS Architecture. The range query (RQ)
API is an example of a bulk operation. Due to the local
merge/split decisions, partitions can have di�erent sizes.
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Figure 2: The e�ect of varying the number of partitions
on MED’s performance with workloads of 100% updates
and 100% RQs (with RQ size = 100, 1K, and 10K). Data
structure size is 10K.

�nd di�erent ideal con�gurations in terms of number of partitions.
On the one hand, in the absence of bulk operations, MEDS would
maximize the number of partitions in order to reduce the granularity
of con�ict on partition accesses for primitive operations. On the
other hand, for bulk operations, MEDS would minimize the number
of partitions in order to decrease synchronization overhead. MEDS
allows for merging and splitting partitions in order to chase high
performance in workloads where the operation mix is not known a
priori and might vary over time.

The following components characterize a MEDS data structure:
Routing layer. This layer implements a search data structure

that serves as an index over partitions The goal of this layer is to
e�ciently map keys to their corresponding partitions and maintain
an ordered list of partitions for serving bulk operations. Moreover,
the modular design of MEDS enables changing the actual implemen-
tation of the routing layer to best perform in di�erent deployments
(e.g., NUMA-aware indexing similar to the one presented in [3]).

Synchronization layer. This layer controls thread access to
partitions. The current MEDS design accepts any synchronization
primitives that guarantee SWMR semantics, which is required given
the underlying sequential design of partitions. We speci�cally fo-
cus on two well-known primitives, namely readers-writer lock [5]
and RCU [7]. Having both options ensures better performance un-
der di�erent workloads (e.g., RCU is preferred in read-dominant
workloads since readers are not blocked by writers).

Data layer. Each partition is a sequential data structure with
the additional support of two operations, split and merge. During
a split/merge, the MEDS framework stops accesses to the target
partition(s) and invokes the respective functions to ful�l the re-
structuring of the partitions. The implementation of the split/merge
functions can be either provided by the programmer without sig-
ni�cant developing burdens since their design is sequential, or
can be automatically implemented. In fact, MEDS can use the in-
sert/remove APIs of the sequential data structure to migrate the
necessary keys between partitions to ful�l the split/merge. Once a
split/merge decision is triggered, the data layer in cooperation with
the synchronization layer performs the operation. Wherever the
MEDS data structure is not rearranging the number of partitions,
operations on di�erent partitions do not require any interaction.

Merge/Split Heuristics. MEDS relies on heuristics to trigger
merge/split decisions. Those decisions are local, meaning a thread

working on a partition can independently execute a merge/split
operation involving that partition (for a split) and contiguous par-
titions (for a merge). As a result, at any given time, partitions in
the data layer can have di�erent sizes. The synchronization layer is
responsible for collecting per-partition performance indicators to
trigger those merge/split operations. We argue that the goal of an
e�ective heuristic is to use these indicators to promote more parti-
tions when con�icting primitive operations dominate the workload,
and less partitions when long bulk operations dominate.

To con�rm the validity of this argument, we conduct a prelim-
inary experiment on a MED data structure populated with 10k
keys, where each partition is implemented by a sequential linked
list. Accesses to partitions are protected using readers-writer locks.
Figure 2 plots the performance by varying the number of partitions.
When the workload is dominated by update operations, increasing
the number of partitions improves performance. This is expected
since having more partitions reduces contention and highlights
the indexing e�ectiveness of the routing layer. On the other hand,
when the workload is dominated by range queries, performance
degrades as the number of partitions increases. Also, increasing the
size of the range query magni�es the e�ect of partitioning.
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