
Universal Support for Scoped Memory Access
Instrumentation

Pantea Zardoshti
Lehigh University
paz215@lehigh.edu

Michael Spear
Lehigh University
spear@lehigh.edu

1 Introduction
Modern microprocessors are increasingly relying on the
memory system to deliver value. However, this value is no
longer transparent. Gone are the days where deeper mem-
ory hierarchies, larger caches, and smarter prefetching could
reliably improve the performance of existing code. Instead,
newmemory features like persistent memory [2, 13], scratch-
pads [1], secure enclaves [5], and transactional memory [3, 4]
all require explicit programmer intervention.
These features introduce several new requirements for

programmers. Each feature introduces nuanced semantics
governing how certain parts of memory operate. Most re-
quire fall-back code to handle when the feature is unavailable
or capacity-constrained [10, 11]. Some features do not (yet)
compose with each other. More broadly, the features remain
experimental, and lack rich language and compiler support.
Some, such as transactional memory, require changes to the
typing rules for functions [6]. Others, such as persistent
memory, require the addition of assembly “fence” instruc-
tions on loads and stores, and the transformation of pointers
to self-referential offsets.
At the same time as hardware vendors are turning to ad-

vanced memory features as a source of performance and pro-
grammer productivity, researchers have increasingly used
combinations of static and dynamic memory instrumenta-
tion for such features as race detection, profiling for locality,
and taint analysis.

We present a system for memory instrumentation of pro-
grammer-annotated code regions. Our system is implemented
within the LLVM compiler framework [8], and supports C
and C++ programs. Through careful use of features of the
LLVM compiler (such as user-defined function annotations)
and of C++11 (such as lambdas), our system does not re-
quire any changes to the language or parser: all analysis
and transformation is performed as a pass over the inter-
mediate representation of the code. In addition, our system
allows for incremental instrumentation of legacy programs,
supports separate compilation, and provides a hybrid static/-
dynamic linking mechanism, through which programmers
can intercept and redirect calls to un-instrumented libraries.
Individual memory features (currently TM and a memory
profiler) are implemented as separate libraries, which are op-
timized at link-time to keep overheads to a minimum while
providing a flexible framework for adding arbitrary memory
instrumentation to C and C++ programs.

2 An Annotation-Based API
In this work, we are focused on instrumenting the memory
accesses made within marked regions of code. Thus we do
not require special annotations on data; instead, data accesses
will be instrumented only when they are made within a
marked region.
We provide two mechanisms for identifying the start of

a region requiring memory instrumentation. In C++ pro-
grams, the statement EXECUTE(λ,F) indicates that the code
represented by λ should have its memory accesses instru-
mented according to feature F. In effect, when EXECUTE is
reached, memory instrumentation for F will be enabled, and
when EXECUTE returns, memory instrumentation for F will
be disabled. For C programs, we use a similar approach:
EXECUTE_C(function, args, F) takes the name of a func-
tion, an opaque pointer, and a feature specifier F. When
reached, memory instrumentation will be enabled, the func-
tion will be executed (with args as its parameter), and then
when the function returns, memory instrumentation will be
disabled. Nesting of features is allowed, but once a feature F
is enabled, a region nested within it cannot disable F.
When an instrumented region calls a function that is

defined in a separate source file, we require that function
to be annotated with INSTRUMENTED. Failure to mark such
functions results in a run-time warning or error, depend-
ing on the memory feature. We also provide the annotation
NOT_INSTRUMENTED, to indicate that all memory operations
performed by a function at a particular call site, as well as
those functions reached from it, do not require instrumenta-
tion. This is useful for math and other third-party libraries. Fi-
nally, the RENAME_INSTRUMENT(x) annotation indicates that
a function should serve as a substitute for function x in situ-
ations where x would other require its memory accesses to
be instrumented.
There are two corner cases for which the API requires

special thought. First, LLVM does not allow user-defined
annotations on constructors. To indicate that a construc-
tor is reached from an instrumented region, we add the
INSTRUMENT_CONSTRUCTOR() function, placed in the con-
structor body. This stub function does not result in any addi-
tional run-time constructor code, but informs our system that
the constructor’s memory accesses (and those of any func-
tions reachable from the constructor) will be instrumented.
Second, the use of C++ lambdas can introduce subtle changes



Grace Hopper Celebration, Sep, 2018, Houston, TX Pantea Zardoshti and Michael Spear

Clang++ Front-End

Annotated 
C++ Code

Annotated 
LLVM IR

Memory 
Instrumentation 

Plugin

LLVM IR with 
Instrumented Clones

Memory Feature 
Library

Executable 
Program

System Linker

Figure 1.Overall system design. Programmer involvement is limited to annotating the source code (dark gray). New components
in the compilation toolchain are shaded light gray.

in control flow. When a program is affected by this nuance,
there is a trivial two-line edit to the source code.

3 SystemWorkflow
The annotations in Section 2 cause LLVM’s compilers for C
and C++ (clang and clang++) to add function calls and/or
annotations to the intermediate representation (IR) that it
produces. Our system applies a custom LLVM plugin to this
annotated IR to transform it so that every interaction with
memory from an annotated code region becomes a function
call to a library that provides the appropriate memory instru-
mentation, and so that the boundaries of each instrumented
memory region entail function calls to the library for ini-
tializing and finalizing instrumentation. The overall system
architecture appears in Figure 1.
The behavior of our memory instrumentation plugin ap-

pears in Figure 2. There are five steps, as discussed below:

Discovery: The annotations establish a root set of functions
that may be called from an instrumented region. We seed a
worklist with these functions, and then analyze each to find
all functions reachable from the root set. This operation is a
single pass over the IR, and takes linear time. Its output is a
set of all functions within the IR that require memory access
instrumentation.

Cloning and Instrumentation: Functions reachable from
annotated regions may also be reached from regular code.
To handle this possibility, we create a clone of each function
identified by the discovery phase, and instrument the clone.
The names of these clones are generated in a manner com-
patible with C++ name mangling. For each cloned function,
our plugin replaces all loads and stores with calls to the li-
brary. These calls are parameterized based on the primitive
type being accessed, and any qualifiers (e.g., volatile or
atomic). For each function call within the clone, we replace
it with either (a) a direct call to the clone of the function, in
situations where the called function is defined in the same
source file, or (b) an indirect call to the library, so that the
appropriate instrumented clone can be found at run-time.
Special functions and compiler intrinsic functions, such as
malloc and memcpy, are replaced with calls to the library.

A pair consisting of the original function and its clone are
also saved in a set, to be used in the Clone Map Generation
phase. Functions annotated with NOT_INSTRUMENTED are not
cloned or instrumented, but are added to the set. Functions
annotated with RENAME_INSTRUMENT are instrumented but
not cloned, and are also added to the set. As with Discovery,
this is a single linear-time pass over the IR.

Boundary Instrumentation: The boundary instrumenta-
tion step modifies calls to EXECUTE and EXECUTE_C, so that
instrumented functions are called instead of the originals.
As it does so, it alters the call signature so that both the
original and instrumented version of the function are passed
to the corresponding library EXECUTE call. This makes it
possible for certain language features, such as TM, to use
uninstrumented code for those settings where hardware can
fully provide the desired memory behavior on the original
code. This transformation is linear in the number of EXECUTE
statements in the IR.

Optimization: There are two types of optimization that we
consider. The first is the set of optimizations that are general
to all forms of memory instrumentation. Examples include
optimizing reads that are known to be post-dominated by
a write to the same location, caching redundant dynamic
lookup of function clones, and removing other redundant
library calls. The second set of optimizations are feature-
specific optimizations. While supported, such optimizations,
whichmay have arbitrary asymptotic complexity, are outside
of the scope of this abstract.

CloneMapGeneration: When an instrumented region calls
a function whose definition is not in the same source file, the
instrumentation step will replace the call with a library call
that performs a dynamic lookup. That lookup must have ac-
cess to the full set of function/clone pairs that were produced
during the instrumentation of all source files that comprise
a program. During Cloning and Instrumentation, our system
produces a set of these pairs. During the Clone Map Genera-
tion step, we create a static initializer for the object file. The
initializer we generate performs a set of calls to the library,
which register these function/clone pairs. In this manner, the
library will have the union of all pairs, from all of its source



Universal Support for Scoped Memory Access Instrumentation Grace Hopper Celebration, Sep, 2018, Houston, TX

Annotated 
LLVM IR

Discovery

Cloning and 
Instrumentation

Boundary 
Instrumentation

Optimization
LLVM IR with 

Instrumented Clones

Clone Map 
Generation

Figure 2. Code Region Plugin Design

files, available at run time. The creation of this initializer is
linear in the number of instrumented functions in the IR.

4 Implementation
Our LLVM plugin consists of under 2K lines of heavily com-
mented C++ code, and can be run as a compile-time pass
for LLVM 5.0. To validate the correctness of the plugin, we
developed an ad-hoc test suite consisting of 6K lines of code
(158 unique tests) that produce every LLVM IR instruction
that accesses memory (to include vector operations and self-
modifying code), affects control flow (to include exceptions),
or causes interaction across source code files.

In terms of memory features, we currently have libraries
to support transactional memory and memory access profil-
ing. Our basic profiler is implemented in 300 lines of library
code, and generates files that can be analyzed off-line to
understand memory behaviors as well as instrumentation
errors in programs. For TM, we ported 10 software TM li-
braries from the latest version of the RSTM suite [7]. Each
took under 600 lines of code to implement in full. Libraries
for encrypted memory and persistent memory are under
active development.

Beyond unit testing, we have also tested our implementa-
tion on a set of existing transactional benchmarks and real-
world programs: STAMP [9], memcached [12], the pbzip2
file compressor [14], and the x265 video codec [14]. Broadly,
performance is on par with the best existing TM implemen-
tations, such as those in GCC, and the programmer effort to
use our system was much less than the effort it took to use
the existing approach for TM [6]. Based on these findings,
we expect our system to offer broad value to several commu-
nities, including those interested in concurrency, persistence,
and security.

References
[1] R. Banakar, S. Steinke, Bo-Sik Lee, M. Balakrishnan, and P. Marwedel.

2002. Scratchpad Memory: Design Alternative for Cache on-chip
Memory in Embedded Systems. In Proc. of CODES+ISSS. 73–78.

[2] Joel Coburn, Adrian M. Caulfield, Ameen Akel, Laura M. Grupp, Ra-
jesh K. Gupta, Ranjit Jhala, and Steven Swanson. 2011. NV-Heaps: Mak-
ing Persistent Objects Fast and Safe with Next-generation, Non-volatile
Memories. In Proceedings of the Sixteenth International Conference on

Architectural Support for Programming Languages and Operating Sys-
tems. Newport Beach, CA.

[3] Maurice P. Herlihy and J. Eliot B. Moss. 1993. Transactional Memory:
Architectural Support for Lock-Free Data Structures. In Proceedings of
the 20th International Symposium on Computer Architecture. San Diego,
CA.

[4] Intel Corporation. 2012. Intel Architecture Instruction Set Extensions
Programming (Chapter 8: Transactional Synchronization Extensions).
(Feb. 2012).

[5] Intel Corporation. 2018. Intel Software Guard Extensions (Intel SGX).
(March 2018). https://software.intel.com/en-us/sgx

[6] ISO/IEC JTC 1/SC 22/WG 21. 2015. Technical Specification for C++ Ex-
tensions for Transactional Memory. (May 2015). http://www.open-std.
org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

[7] Matthew Kilgore, Stephen Louie, Chao Wang, Tingzhe Zhou, Wenjia
Ruan, Yujie Liu, , and Michael Spear. 2015. Transactional Tools for the
Third Decade. In Proceedings of the 10th ACM SIGPLAN Workshop on
Transactional Computing. Portland, OR.

[8] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Frame-
work for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimization.
Palo Alto, CA.

[9] Chi CaoMinh, JaeWoong Chung, Christos Kozyrakis, and Kunle Oluko-
tun. 2008. STAMP: Stanford Transactional Applications for Multi-
processing. In Proceedings of the IEEE International Symposium on
Workload Characterization. Seattle, WA.

[10] Yang Ni, Adam Welc, Ali-Reza Adl-Tabatabai, Moshe Bach, Sion
Berkowits, James Cownie, Robert Geva, Sergey Kozhukow, Ravi
Narayanaswamy, Jeffrey Olivier, Serguei Preis, Bratin Saha, Ady Tal,
and Xinmin Tian. 2008. Design and Implementation of Transactional
Constructs for C/C++. In Proceedings of the 23rd ACM Conference on
Object Oriented Programming, Systems, Languages, and Applications.
Nashville, TN, USA.

[11] Torvald Riegel, Christof Fetzer, and Pascal Felber. 2008. Automatic Data
Partitioning in Software Transactional Memories. In Proceedings of the
20th ACM Symposium on Parallelism in Algorithms and Architectures.
Munich, Germany.

[12] Wenjia Ruan, Trilok Vyas, Yujie Liu, and Michael Spear. 2014. Trans-
actionalizing Legacy Code: An Experience Report Using GCC and
Memcached. In Proceedings of the 19th International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems.
Salt Lake City, UT.

[13] Haris Volos, Andres Jaan Tack, and Michael M. Swift. 2011.
Mnemosyne: Lightweight Persistent Memory. In Proceedings of the
Sixteenth International Conference on Architectural Support for Program-
ming Languages and Operating Systems (ASPLOS XVI).

[14] Tingzhe Zhou, PanteA Zardoshti, and Michael Spear. 2017. Practical
Experience with Transactional Lock Elision. In Proceedings of the 46th
International Conference on Parallel Processing. Bristol, UK.

https://software.intel.com/en-us/sgx
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2015/n4514.pdf

	1 Introduction
	2 An Annotation-Based API
	3 System Workflow
	4 Implementation
	References

