
Consensus in Enterprise and Financial Blockchains:
Assumptions and Challenges

Henry F. Korth
Dept. of Computer Science and Eng.

Lehigh University
Bethlehem, PA 18015 USA

hfk2@lehigh.edu

ABSTRACT
While blockchain critics often point to the excessive en-
ergy consumption of Bitcoin-style proof-of-work, the rapidly
growing world of enterprise-class blockchain databases has a
set of assumptions and requirements that differs greatly from
those of a public, fully decentralized blockchain like Bitcoin.
In such settings, message-based consensus is feasible due to
the ability of a permissioned chain to have admission con-
trol for nodes and possibly to make stronger assumptions
about node behavior. Traditional Byzantine consensus [21]
does not fully meet the needs of these environments due
to performance issues as well as due to the dynamic arrival
and departure of nodes. Practical Byzantine Fault Tolerance
[9] addresses the expected-case issue for these environments,
though the worst-case performance is bounded by the classic
formal results of [12]. The much more recent Stellar protocol
[17] addresses the dynamic arrival and departure of nodes
via a clever definition of quora for consensus. The Algo-
rand agreement protocol [14] addresses performance even in
public chains. Another set of issues arise in cross-chain and
off-chain transactions. This talk will review the assumption
set driving the design of blockchain-consensus algorithms as
they are or are likely to be applied in financial systems and
as part of larger enterprise information systems.

PVLDB Reference Format:
Henry F. Korth. Consensus in Enterprise and Financial Block-
chains: Assumptions and Challenges. PVLDB, 12(xxx): xxxx-
yyyy, 2019.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

1. INTRODUCTION
The subject of distributed consensus is a long-studied

problem, going back to the classic two-phase commit (2PC)
protocol [16]. Subsequent work sought to provide improved
solutions, by seeking either to improve performance or to
overcome shortcomings of prior work. Three-phase commit
(3PC) [28] addressed the possibility of long-duration block-
ing in the event of an untimely coordinator crash in 2PC.

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org. Copyright is held by the owner/author(s). Publication rights
licensed to the VLDB Endowment.
Proceedings of the VLDB Endowment, Vol. 12, No. xxx
ISSN 2150-8097.
DOI: https://doi.org/10.14778/xxxxxxx.xxxxxxx

The distributed commit problem was addressed in a more
general distributed-consensus setting in Paxos [15] and sub-
sequent improvements such as Raft [20]. Byzantine con-
sensus [21] considered a weaker assumption regarding node
failure. Rather than using the non-malicious fail-stop as-
sumption of 2PC and 3PC, Byzantine consensus is based
on the assumption that failure may consist of multiple ma-
licious nodes conspiring to subvert the consensus protocol.
However, classic work on Byzantine agreement assumes a
fixed number n of nodes in the system.

Public blockchain systems, in which new nodes may join
without limitation, need a Byzantine-style failure assump-
tion, but face the additional threat of a Sybil attack, in which
an adversary creates an arbitrarily large number of new
nodes in the system for the purpose of subverting the con-
sensus protocol. This threat led the developer(s) of Bitcoin
(under the pseudonym Satoshi Nakomoto) to use a proof-of-
work consensus protocol [19] that requires a would-be Sybil
attacker to control more than half of the entire network’s
computation power (referred to as “51% attack”). That pro-
tocol, referred to as Nakomoto consensus, is effective from a
security standpoint but extraordinarily consumptive of en-
ergy.1

These and various other consensus protocols present a
range of options for an enterprise seeking to deploy a block-
chain system. Such enterprises face a choice of using an ex-
isting blockchain, cloning an existing open-source blockchain
system, or building a new system from scratch. Many fac-
tors go into such a choice, with the consensus protocol being
only one. This paper’s focus, however, is on consensus pro-
tocols and their underlying assumptions, and their impact
on enterprise-blockchain design choice. For a deeper discus-
sion of issues beyond consensus, see [4, 26].

We begin by reviewing criteria for choosing an approach,
starting with the question that should come first in any
planning for an enterprise blockchain, “Why not just use
a relational database?”. After identifying needs that sug-
gest a blockchain approach, we identify criteria for choosing
a specific blockchain solution. Next, we attempt to cate-
gorize blockchain systems by their approach to consensus,
first with a taxonomy in Section 3, and then by reviewing
a representative set of systems in Section 4. Because en-
terprise blockchains do not exist in isolation, we consider
consensus across blockchains and between blockchains and

1Most recent estimates show Bitcoin consuming about
0.29% of the world’s electricity, roughly that of Switzerland
or 5.9 million average U.S. households [digiconomist.net,
June 2019].

1



“off-chain” systems in Section 5. Section 6 discusses choice
of an approach from an enterprise perspective.

2. CRITERIA FOR CHOOSING A CONSEN-
SUS PROTOCOL

A growing number of businesses are implementing block-
chain databases or at least considering doing so. Quite
often these are distributed ledgers in which a group of or-
ganizations jointly maintain a record of financial transac-
tions. More generally, a group of organizations may seek
joint maintenance of a shared, distributed database. In any
such case, one must first address the obvious alternative of
a traditional distributed database along with its centrally
managed consensus protocol (Section 2.1). Once the choice
between a blockchain system and a traditional system is
made, one can them move on to the choice of a specific
approach (Section 2.2). Finally, the performance of the spe-
cific implementation needs to be considered. Benchmarking
of blockchain systems on realistic benchmarks is considered
in [11].

2.1 Blockchain versus Traditional Database
Traditional database systems are well-established, offer

high functionality and performance, and likely are already
installed in the enterprise. For all participants to share
in a singly-administered database based on a traditional
database system, all must trust the organization adminis-
tering the database and furthermore be confident that this
trust will persist indefinitely into the future. Blockchain
systems, though much newer and in-flux, offer the following
four main properties not provided by traditional database
systems:

1. Decentralization: Limited or no central control.
Unlike a distributed system, in which multiple nodes
cooperate under a unified administrative framework, a
decentralized system offers greater (or total) autonomy
to nodes.

2. Tamper Resistance: It is infeasible for any par-
ticipant to change committed data. Note that this is
not the same as durability in the ACID properties of
database transactions, since in a traditional database
there is unconditional trust of the database system it-
self and its administration. In a blockchain, there is
as assumed mutual distrust among the participants.

3. Irrefutability: Participants’ updates are crypto-
graphically signed, allowing all participants to verify
the source of data and transactions.

4. Anonymity: Participants’ identifiers on the block-
chain may be kept separate from real-world identifiers,
though there remains the threat of de-anonymization
using off-chain data.

The key motivation for choosing a blockchain database over
a traditional database solution is the degree to which the
participating organizations

• need to access data, especially to perform updates,
without having to submit requests to a centrally con-
trolled system;

• need a substantial degree of autonomy from centralized
control;

• lack complete mutual trust and thus would benefit
from a trustless or reduced-trust blockchain environ-
ment;

• seek to limit or eliminate the role of a central organi-
zation’s control.

It is not sufficient to consider these issues just at the present
time but also how they may change as the relationships
among the organizations evolve. At some point in the fu-
ture, might an organization have a self-interest in removing
or altering updates it had added previously?2 Is there a
need for external data visibility, perhaps for audit purposes?
These, and other considerations, if answered in the affirma-
tive, point towards the desirability of choosing a blockchain
database of some type. The specific choice then depends
on the degree to which each of the four basic blockchain
properties must be supported.

2.2 Choosing a Blockchain Solution
Assuming that there is at least a modest degree of current

or potential mutual distrust among the participating orga-
nizations, a blockchain-based solution may be deemed desir-
able. The following sections review some of the feature- and
policy-based considerations in choosing a blockchain-based
approach.

2.2.1 Governance
The first issue is the appropriate governance model for

the blockchain. Despite some level of distrust, there may
be agreement to have an organization (or a small number of
organizations) serve as a permissioning authority to control
membership in the blockchain system. For example, con-
sider a supply-chain database for a large enterprise. Mem-
bers of the supply chain may not all trust each other. Fur-
thermore, they may not trust the large enterprise they are
supplying not to modify data in the future. Despite such
mistrust, the large enterprise does indeed control who its
suppliers are, and, as a consequence, it may be a reason-
able compromise of autonomy to allow that large enterprise
to control membership in the blockchain system. Allowing
such a compromise allows greater options in the choice of a
consensus protocol because the permissioning authority can
protect against Sybil attacks, thus relieving the consensus
protocol of that responsibility.

One could choose a totally trustless governance model
such as is used by public blockchains. Running on top of a
public blockchain creates exposure to volatility of the under-
lying cryptocurrency as well as contention for commitment
of transactions, but provides the start-up and operational
savings of not having to run the underlying blockchain. The
popularity of ERC-20 (and similar) tokens on top of the
Ethereum blockchain is evidence of the perceived merits of
this approach. Alternatively, one could create a private
clone of a public open-source system. This latter choice
might seem like a good compromise, but given the likely
relatively modest number of participants, the potential of
a 51% attack is high enough as to be unacceptable unless
there is a relatively strong degree of trust; and if there is

2Consider, for example, a supply chain in which a calamitous
recall situation occurs. Contributors to the supply chain for
the recalled product suddenly have a strong incentive to
cover up responsibility.

2



such trust, a permissioned solution likely will prove to be
more cost-effective and offer a higher level of performance.

2.2.2 Privacy
Once the trust/governance model is determined, the next

issue is to identify the level of data privacy needed. Certain
data, such as transaction IDs and cryptographic signatures,
must be accessible by all participants, but the transaction
payload may have restricted access. Continuing the supply-
chain example, a supplier may wish to keep the price of
the supplied items secret between itself and the enterprise
controlling the blockchain (and possibly also an auditor).
Protection of secrets using public-key cryptography and/or
zero-knowledge proofs is discussed elsewhere and is outside
the scope of this paper’s discussion, as it is not materially
influenced by the consensus protocol in place.

2.2.3 Performance
Performance is influenced to a significant degree by the

choice of consensus protocol. As is the case for any transac-
tion system, performance can be measured by:

• throughput: measured in transactions per second;

• average latency: measured by average time for
a transaction of standard size to be considered final.
Finality in a blockchain system differs slightly from
commit in a traditional database system, as we have
discussed;

• tail latency and latency bounds: measured by
high-percentile latency, with worst-case latency par-
ticularly relevant to systems with hard real-time dead-
lines.

2.2.4 Data Integration / Cross-system Transactions
A complete system design must address additionally the

matter of data integration between the legacy enterprise
database and the blockchain database. Many of these issues
have been studied in other contexts of federated databases,
but we shall discuss issues specific to cross-system transac-
tions later, in Section 5.

3. CONSENSUS PROTOCOL TAXONOMY
In this section, we list a set of design choices for con-

sensus protocols and discuss their relative advantages and
disadvantages. Our focus will be on those protocols most
relevant to an enterprise setting and thus on message-based
protocols. Then, in the subsequent section, we shall place
several existing consensus protocols within this taxonomy.

3.1 Consensus and Coordinator Type
At the highest level, consensus protocols fall into one of 3

categories:

• [CC1]: Proof of Work (PoW)

• [CC2]: Proof of Stake (PoS)

• [CC3]: Message-based

PoW is typified by the energy-consumptive Nakomoto-
consensus protocol of Bitcoin. However, alternative PoW
approaches have been proposed that benefit from large main
memories. An attack is still of prohibitive cost, but the

energy costs of a large main memory is much less that that
of computation-intensive mining.

PoS assigns a probability of being chosen to add the next
block to the chain based on the amount of currency held.
The exact meaning of held varies. It may be total held,
total placed in escrow, or a product of time and holdings.
To avoid centralization, a probabilistic choice is typically
made using a PoW scheme among the top stakeholders so
as to avoid the largest stakeholder having absolute conrol.
The relatively small number of nodes involved in this PoW
scheme allows for a much less energy-intensive process as
compared with a pure PoW solution.

Message-based consensus allows a specific number of nodes
to reach agreement despite the presence of some bounded
number of nodes being “faulty” or “adversarial.” As a result,
most message-based protocols rely either on some externally-
sourced concept of trust (at least to some limited extent)
among certain nodes or on some membership-control au-
thority. Algorand avoids this by a stake-based weighting
of node votes in the messaging protocol. Some message-
based protocols utilize a central coordinator, possibly with
a means to replace that coordinator in the event of actual
or suspected failure. This leads us to split CC3 into subcat-
egories as follows:

• [CC3.1]: fully decentralized, either no coordinator
or all nodes may be coordinator.

• [CC3.2]: decentralized with constraints based on
trust and or quora.

• [CC3.3]: elected and replaceable coordinator.

• [CC3.4]: irreplaceable coordinator chosen for each
transaction.

• [CC3.5]: single, irreplaceable system-wide coordina-
tor.

This subdivision of message-based consensus focuses largely
on the degree of centralization of consensus coordination.
Greater centralization generally means reduced overhead as
measured by message rounds or total number of messages.
Centralization comes at a cost in terms of trust (about which
we say more in the next section) and possibly in terms of
blocking (as in the case of an untimely coordinator failure
in 2PC).

3.2 Trust and Membership
Blockchains may have no membership restrictions, as is

the case for public chains for which anyone can download
the code and become a node. Others are strictly controlled:

• [TM1]: Public, open to all without restriction and
with no trust requirements.

• [TM2]: Public partnership, all partners participate
in consensus, but consensus requires some level of mu-
tual trust among subsets of nodes.

• [TM3]: Private, a single owner or small group con-
trol membership and manage consensus. The nodes
corresponding to the controlling group must be trusted
to perform their specified tasks.

• [TM4]: Fixed pre-determined membership set. No
trust requirements.

3



Bitcoin and Ethereum are the two best-known blockchains
that are fully open, though there are many more, includ-
ing their respective forks Bitcoin Cash, Bitcoin SV, and
Ethereum Classic. XPR (Ripple) and XLM (Stellar) are
public but validation has a trust requirement. The IBM-
Maersk TradeLens shipping blockchain, based on Hyper-
ledger, was originally controlled by IBM and Maersk, though
other “TrustAnchors” have been added as validators[2]. At
Lehigh University, the HawKoin prototype replacement for
the current GoldPlus student purchasing system uses a cen-
trally managed implementation of Hyperledger due to the
need to prevent student-to-student transactions.3

3.3 Failure-Mode Assumption for Nodes
Node failure modes range from the simplistic fail-stop

model in which nodes fail only by stopping and never do
anything wrong. At the other extreme, in Byzantine fail-
ure, failed nodes become omniscient about the state of other
nodes and of the network and collude in an arbitrary manner
to disrupt the system.

• FND1: Fail-stop. Nodes may cease to execute but
never operate incorrectly.

• FND2: Byzantine failure. Nodes may fail arbitrarily
and no assumptions may be made as to the nature of
that failure. Safety thus mandates a pessimal assump-
tion. For correctness, the number of failed nodes must
be bounded.

• FND3: Infrequent Byzantine failure, with the ex-
pected number of failed nodes well below the upper
bound.

• FND4: Limited Byzantine failure with the limited
extent of failure defined by the trust model.

Addressing the most general and malicious types of failure
provides maximum safety, but necessitates most costly con-
sensus protocols.

3.4 Failure-Mode Assumption for the Network
Here, we treat the network as being a connection medium

whose nodes or routers are not part of the blockchain system
and thus subject to an independent set of assumptions.

Network failures may materialize as failure to deliver mes-
sages or as an arbitrarily long delay in delivering them. A
blockchain node cannot distinguish the non-transmission of
information from delayed delivery unless delays are bounded.
This latter assumption imposes a degree of synchrony on the
network. Bounded delays can be an assumed property of
the network or a feature implemented by ensuring that late
messages are ignored. The latter can be done by crypto-
graphically secured timestamps within messages (assuming
clock synchronization) or by periodically selecting new cryp-
tographic keys (using an assumed secure key-distribution
mechanism).

Networks may partition such that the blockchain nodes in
a single partition may all communicate but none may com-
municate with other partitions. Partitioning may interact

3University systems, like Lehigh’s GoldPlus, allow students
to spend money provided by parents at university-run or
university-approved vendors. Allowing student-to-student
transactions would risk enabling a university-internal black
market.

Protocol CC TM FND FNT

2PC CC3.4 TM3 FND1 FNT1a/2b/3a
3PC CC3.3 TM3 FND1 FNT1a/2a/3a
BFT CC3.1 TM4 FND2 FNT1b/2a/3a

PBFT CC3.3 TM4 FND3 FNT1b/2a/3a
BTC CC1 TM1 FND2 FNT1a/2b/3b
ETH CC1,2 TM1 FND2 FNT1a/2b/3b
XRP CC3.2 TM2 FND3 FNT1a/2b/3b
XLM CC3.2 TM2 FND3 FNT1a/2b/3b

Algorand CC3 TM1 FND3 FNT1a/2a/3a
Iota CC1 TM1 FND2 FNT1a/2b/3b

Hyperledger CC3 TM3 FND2 FNT1a/2b/3b

Table 1: Protocol Classification

adversely with other assumptions to lead to wrong inferences
by nodes unless care in taken in the protocol.4

Network communication can lead to data errors, but these
are easily dealt with at a lower level via error-detecting or
error-correcting codes. We thus do not address messages
whose content has been altered within the network, nor mes-
sages for which the identity of the sender is incorrect.

Finally, messages may be intercepted by nodes that were
not the intended recipient. This enables not only theft of
information but also a suppress-replay attack, in which an
adversary captures a message and resends it at a later time
aiming to cause the consensus algorithm to fail. The Byzan-
tine node-failure assumption takes this into account. Data
security issues for the payload of non-protocol messages can
be managed via encryption.

Thus, for network failure modes, we list not a set of cat-
egories but rather a set of three binary choices leading to
23 = 8 resulting categories:

• FNT1a: fail-stop / FNT1b: reliable delivery (i.e.,
no, or only bounded-time, failures).

• FNT2a: robust / FNT2b: partitionable.

• FNT3a: highly synchronous / FNT3b: highly
asynchronous.

The final item on the above list is not truly an all-or-none
choice. Some protocols assume highly probably synchrony
in which a substantial fraction of the messages are delivered
within a stated time bound. Pure asynchrony is provably
uninteresting as an option due to the theorem of [12] stat-
ing that no completely asynchronous consensus protocol can
tolerate even a single unannounced node failure. We thus
use the terminology “highly {a}synchronous.”

4. TAXONOMY: EXISTING PROTOCOLS
In Table 1 we list several protocols and their classification.

In this section, we discuss how we classified each protocol
and note key features not fully captured in the classification

4.1 Classic 2PC and 3PC
We do not discuss classic distributed database consen-

sus in detail here. See [27] for textbook coverage, [28] for

4Historically, this was one of the factors leading to the non-
adoption of 3PC in practice.

4



the original 3PC paper, and [16] for the original 2PC pa-
per. These protocols both assume a single administrative
authority controlling the distributed system and a fail-stop
model of failures. 2PC uses a single coordinator for a trans-
action (though distinct transactions may have different co-
ordinators). This leads to blocking if the coordinator fails
at an inopportune time. 3PC alleviates this by adding a
messaging round (thus the added phase), to ensure distri-
bution of the knowledge that nodes are able to commit if so
instructed before the protocol makes a final commit/abort
decision. This allows a failed coordinator to be replaced and
blocking behavior to be avoided. The classic version of 3PC
does not tolerate network partitions since it must be able to
distinguish node failure from network failure.

4.2 Classic Byzantine
The classic work on Byzantine consensus, represented here

by [21], assumes a given set of n nodes of which f are faulty
with n >= 3f + 1. A total of f + 1 rounds of messaging
is required. In each round, every node transmits to every
other node for a total of n2−n messages. Neither the value
of n and f nor the identity of the nodes themselves can
be changed once the protocol is running. The network is
assumed “fail-safe and of negligible delay.” Thus to get the
full level of fault tolerance, we must assume, given n that
f is the maximum allowed value. This inflexibility does not
satisfy enterprise blockchain applications because:

• Most nodes are nonfaulty most of the time. Neverthe-
less, the full f + 1 rounds of messaging are needed in
all cases to achieve the full power of the protocol.

• The fixed set of members for the protocol results in
a need to quiesce the entire consensus activity in the
system in order to change membership.

4.3 Practical Byzantine
The protocol of [9] achieves its “practicality” by incorpo-

rating a central coordinator (referred to as the primary) into
the protocol. This primary chooses the ordering of opera-
tions (transactions). With the ordering decided centrally, a
decision on an operation can be made by all nonfaulty nodes
using a three-phase protocol (reminiscent of the 3PC algo-
rithm of [28]). This entails significant message-cost savings
since the number of rounds is a constant independent of the
number of nodes, and the messages are such that they can
be multicast to all nodes. At the end of the protocol, agree-
ment is reached when 2f + 1 nodes have replied with the
same value.

All messages include a view number so as to enable a view
change mechanism that protects against failure of the pri-
mary. View change is invoked when a node cannot execute a
requested operation (e.g. fails). This action leads to a choice
of a new primary with a new view number larger than that
of prior views and a three-phase process to confirm the new
“view” and its view number. Processing in the new view
can then proceed.

If many nodes invoke a view change and do so often and
maliciously, the message complexity of this protocol rises
rapidly. Since such behavior is indeed faulty behavior, at
most f nodes can behave in this manner, thus in the worst
case create f + 1 rounds of messaging to execute an opera-
tion, making this no better than the classic protocol. How-
ever, if we do not expect nodes to be faulty very often and

seek only to guard against the (remote) possibility of as
many as f nodes failing, normal protocol operation results
in many fewer messaging rounds than the classic algorithm.

Practical Byzantine fault tolerance retains the flaw, from
a blockchain-consensus perspective, that it has a fixed set of
members. Thus there is a need to quiesce the entire consen-
sus activity in the system in order to change membership.

We classify this protocol as FNT1b, reliable delivery, but
note that the protocol itself specifies the needed level of
reliability and its implementation. We classify it as FNT3a
although it does tolerate some asynchrony. As the degree of
synchronization decreases, the likelihood of a view change
being invoked increases.

4.4 Leading Public Coins, BTC and ETH
We discuss only the two leading public blockchains, Bit-

coin and Ethereum as representatives of this class.

4.4.1 Bitcoin
Bitcoin is the most well-known implementation of proof-

of-work (PoW), but its approach is not a viable large-scale
enterprise consideration due to the energy costs and high
transaction latency. The protocol is self-adjusting so as
to add a block in approximately 10-minute intervals, Since
PoW includes a risk of not only malicious but also nonma-
licious forks, one must wait for several blocks to be added
after the block containing one’s transaction to have confi-
dence that the transaction is indeed durable (in the sense of
’D’ in the ACID properties). Since the commit of a transac-
tion onto the chain is only tentative at first, the term finality
is used to indicate the point where the transaction is durable
with an extremely high level of probability. The accepted
standard in Bitcoin is to wait for 6 blocks, which results in
a time-to-finality of an hour. Such latency is unacceptable
for such financial transactions as consumer-purchases and
stock trades. An alternative in such cases is to use off-chain
accelerators such as Lightning (see Section 5). Another al-
ternative is to rely on trusted intermediaries that promise
not to double-spend, but that, of course, deviates from the
trustlessness assumption.

Bitcoin has faced throughput issues resulting from the
upper bound on block size. This matter has led to seri-
ous disputes in the Bitcoin community and controversy over
proposed hard forks to remedy the issue. While we don’t
elaborate here on Bitcoin governance, the matter is one that
would be of possible concern to an enterprise. See [1] for an
explanation of the segregated witness Bitcoin protocol up-
grade.

Aside from matters of consensus, a major factor limiting
Bitcoin as an enterprise solution is its limited scripting lan-
guage, which is not Turing-complete.

4.4.2 Ethereum
The Ethereum blockchain was designed in part to tar-

get financial and enterprise applications. It has a Turing-
complete language for scripts that are referred to as “smart
contracts,” supported by a virtual machine (the Ethereum
Virtual Machine (EVM) into whose instruction set higher
level code can be compiled (the standard high-level language
is Solidity). As we focus here on consensus, we refer to
the many online and book sources for an introduction to
Ethereum and Solidity such as [5].

5



Ethereum consensus is a PoW mechanism that, though
performing at a higher level than Bitcoin, faced many of the
same issues Bitcoin faces. An impending fork will implement
a switch to a proof-of-stake (PoS) mechanism, named Casper
in which validators propose new blocks in proportion to their
stake of ETH. The planned upgrade includes sharding of
the chain so as to allow parallelism in the processing of new
blocks.

The process of switching Ethereum consensus protocols
illustrates the form of governance in the public Ethereum
blockchain. Ultimately, a majority must agree to any hard
fork that is proposed, but the leadership in finalizing the
specific proposal comes from Ethereum’s founder, Vitalik
Buterin, and the Ethereum Foundation. The strength of
this leadership was demonstrated in the followup to a bug
in the smart-contract code of an Ethereum-based decentral-
ized autonomous organization in 2016 that resulted in the
theft of ETH worth tens of millions of US dollars. Despite
concerns about the principle of immutability, it was agreed
that there would be a hard fork of the Ethereum blockchain
to refund the stolen funds. This controversial move led some
miners to continue to mine off the old chain, resulting a new
cryptocurrency, Ethereum Classic (ETC).

Ethereum has established itself as a major platform for
organizations wishing to issue their own currencies without
having the create and maintain the underlying infrastruc-
ture. By issuing tokens based on the ERC-20 standard, or-
ganizations can take advantage of the rich ERC-20 support
infrastructure, including wallet software for users. All pro-
cessing is done on the Ethereum blockchain, eliminating the
need to develop a critical mass of miners (for PoW) or val-
idators (for other consensus protocols).

4.5 Currency-Exchange: XRP and XLM
Both Ripple and Stellar are in the business of intermedi-

ating international foreign-currency exchange. The legacy
SWIFT system still dominates this business, but even in its
most modern SWIFT GPI variant, there is a manual com-
ponent that limits overall performance, with response times
at least several minutes. Ripple and Stellar claim transac-
tion times that are only several seconds. Ripple and Stellar
each use a cryptocurrency as the intermediate currency in
the exchange process: XRP for Ripple and XLM (Lumens)
for Stellar.

Both XRP and XLM achieve Byzantine consensus using
a quorum-based approach. The use of quora in distributed
agreement was first proposed by Gifford [13] in the context
of replicated databases. Ripple and Stellar expand consider-
ably on this concept to adapt it to the needs of a blockchain
system and the need to linearize blockchain operations.

In Stellar, each node determines its own mini-quorum,
called a quorum slice and shares that set with all nodes.
This slice is independent of the number of nodes in the sys-
tem. A node selects its quorum slice from among nodes it
trusts. That trust is defined by the node’s administrator and
may be based on various considerations, such as business re-
lationships or public reputation. Thus instead of placing a
premium on wealth, as in PoS, Stellar allows, for example,
low-net-worth non-profits to be in the business of partici-
pating in the XLM network for the purpose of keeping the
large institutions honest.

Stellar expects every pair of quorum slices to have non-
empty intersection. It is robust to a Byzantine failure of a

set B of nodes if this intersection property survives the dele-
tion of B from the node set and from every quorum slice.
A three-phase agreement protocol ensures that all “correct”
nodes agree on the ordering. Correctness in Stellar is a com-
plex concept based on not just the node itself but whether
it may be “befouled” by receiving so much incorrect input
that it accepts a wrong value. Correct nodes exhibit the
safety property that no two nodes externalize different val-
ues for the same operation slot. They also exhibit the live-
ness property that they can externalize new values without
the participation of any failed nodes. Note that the use of
“can” and not “must” allows for a situation where consen-
sus is possible for a node but never happens. This somewhat
weak liveness property is necessitated by the impossibility
result of [12].

The XRP blockchain [10], like Stellar, allows a dynamic
membership set and allows each node to choose a set of
nodes with which it is willing to exchange consensus mes-
sages. Such a set is called a unique node list. Various ver-
sions of the protocol have had differing requirements for the
overlap among unique node lists, depending on the model
used for potential failure modes. Overlap must be 90% for
a Byzantine-style assumption, though lower overlap rates
(on the order of 60%) are sufficient for stronger reliability
assumptions.

4.6 Algorand
Unlike other consensus protocols we have discussed, Algo-

rand makes use of the power of randomization in consensus
protocols, as first shown in [7] and [8]. Algorand allows a
selected subset of the nodes, called a committee to make
the selection of the next block. Members of the commit-
tee are chosen via a randomized process in which voting
power is weighted by the currency stake held. The dis-
tinctive feature membership selection is the use of verifiable
random functions [18] in combination with public/private
key pairs to allow committee members to be identified in
a cryptographically verifiable manner without need for any
distributed consensus process. Because random selection
can select malicious members for a committee, committees
must be large enough to make the probability of malicious
control virtually zero. In [14], a probability of 5 × 10−9 is
deemed acceptable, and in that case, a committee size of
roughly 2000 suffices if 80 percent of the total holdings are
held by honest users. The committee size must be larger if
a lower percentage is honest, and, in any case at least 2/3
of the holdings must belong to honest users. Interestingly,
the committee size bound is independent of the overall num-
ber of nodes/holdings, meaning that for a very large-scale
network, committees are small, though not of insignificant
size (for calibration, note that Ethereum has about 10000
nodes).5

The consensus process under normal operation then re-
quires only a constant number of messaging rounds for vot-
ing. However, that depends on strong synchrony. Periods
of asynchrony can lead to forks in the chain that are then
resolved when synchrony is restored by the same manner of
consensus used to propose new blocks. While this can, in
theory, lead to worst-case behavior of repeated forks and res-
olution of those forks, but the likelihood of this is provably
negligibly small.

5See ethernodes.org for a current count.

6



The power of randomization in Algorand allows relatively
efficient consensus without any need for trust.

4.7 Iota
Iota [23] has two distinctive features:

• The “blockchain” is not a linear linked list but is in-
stead a directed, acyclic graph (DAG).

• The unit of commit is not a block but rather an indi-
vidual transaction

More specifically, each transaction is a node in the DAG
(called a tangle in Iota parlance). An edge (T1, T2) means
that T1 approves T2 directly. Paths represent indirect, or
transitive, approval and thus the strength of approval for a
transaction T is the number of distinct nodes (transactions)
T ′ for which there is a path in the DAG from T ′ to T .

A new transaction submitted by a node must approve two
existing transactions. Nodes are responsible for validating
transactions for which they provide direct approval. This
lightweight approach to adding a transaction is targeted at
Internet of Things (IoT) applications that are run by large
numbers of relatively low-powered computers.

Adding a transaction requires solution of cryptographic
puzzle (as protection against Sybil attacks). Iota has rules
for choosing transactions to approve that ensures approval
of leaf nodes (tips) in a timely manner. The approval pro-
tocol also addresses possible attacks in which the attacker
ignores the approval protocol and approves in an adversar-
ial manner. In such situations, conflicting transactions may
appear in the tangle and an honest node must choose among
them. This cannot be done based solely on prior approvals
since they may have come from an attacker. Instead, the
honest nodes runs the tip-selection algorithm repeatedly to
see which of the conflicting nodes would be most likely to be
approved by an honest transaction. An important benefit
of this approach is that the work in adding a transaction
depends only on computations on the locally stored copy
of the tangle rather than the passing of messages over the
network. The network is used to communicate updates in a
gossip-protocol style but not as part of the consensus pro-
cess. This is important for low-connectivity IoT nodes.

4.8 Hyperledger
Hyperleder[3] is a Linux Foundation project spanning a

variety of open-source, distributed-ledger projects. The most
widely known and used framework is Hyperledger Fabric,
which has strong support from IBM.

Applications that submit transactions must register with
a “Certificate Authority” that manages access to the per-
missioned blockchain. Fabric takes a distinctive approach to
transaction processing that is related in concept to validation-
based protocols in database concurrency control. This ap-
proach executes transactions before they are ordered in the
blockchain, but requires that they be validated before be-
ing finally added to the permanent state of the blockchain.
In contrast, typical blockchains first choose an ordering of
transactions and then validate and execute them. In Fab-
ric, a set of “endorsing peers” execute the transaction and
generate and cryptographically sign the transaction’s read
and write sets. The application that submitted the trans-
action collects the responses from the endorsing peers and
forwards that to the ordering service, which is implement

on a (relatively small) subset of the nodes. Once the trans-
action is placed in the order, the read set is checked to see
that data values have not changed and that the endorsement
policy was followed. Then the transaction is disseminated
to all nodes and it is validated and added to the chain. For
further details see [25].

This framework leaves the exact policy as a parameter to
the framework, allowing distinct enterprise deployments of
Fabric free to choose a mechanism appropriate to the appli-
cation domain. This flexibility includes not only the specific
endorsement mechanism but also the number of peers re-
quired for endorsement.

By separating in a clean manner the various system com-
ponents for transaction processing, the Fabric framework
achieves a flexibility that broadens its applicability. Of par-
ticular note is that the set of trust assumptions for endorse-
ment can be different from that used for ordering. Of course,
any specific deployment includes a specific set of choices of
policy and those must be considered carefully by designers
of that specific enterprise deployment.

4.9 Notable Omissions
We have not included settlement tokens such as JPM Coin

and Libra. JP Morgan’s JPM Coin is based on JP Mor-
gan’s Quorum blockchain, whose implementation is based
very closely upon the Ethereum blockchain source code. Li-
bra, the recent proposed, but not yet deployed, network from
a Facebook-led consortium, the Libra Association, is a per-
missioned blockchain using Byzantine fault tolerance. Libra
claims a plan to evolve from being permissioned to being
public. The technical approach is presented in [6], but much
of the evolution of Libra prior to launch is likely to be driven
by regulatory and political considerations, rather than tech-
nical ones.6

5. CROSS-CHAIN AND OFF-CHAIN TRANS-
ACTIONS

A transaction may need to span more than just a single
blockchain for two main reasons:

1. The use of an off-chain system to aggregate transac-
tions into one, larger transaction to be placed on the
blockchain. This aggregation is done by an off-chain
accelerator that is designed to process transactions
more quickly and without the need for distributed con-
sensus. Off-chain transactions take advantage of a sit-
uation where 2 or more users have a high degree of
trust and therefore are willing to enter into an off-
chain channel offering higher performance and lower
cost.

2. The need to run a transaction that affects more than
just one blockchain. This occurs if a trade is to be
made of one cryptocurrency for another without using
a fiat currency like the U.S. Dollar as an intermedi-
ary. There needs to be a separate transaction on the
blockchain of each currency involved but all of these as

6This view is similar to that expressed by U.S. Federal Re-
serve Chair Jerome Powell in his July 2019 testimony to the
U.S. Congress, in which he cited the systemic risk that the
Libra plans appear to present.

7



a whole must be integrated into a single global trans-
action. In an enterprise setting, this is the blockchain
version of the legacy problem of federated databases.

Neither of these needs can be met with the standard meth-
ods of committing blockchain transactions since each chain’s
consensus mechanism is internal to that chain.

We discuss briefly representative existing systems that ad-
dress these issues.

5.1 Lightning
The key feature of the Lightning Network [22] is the abil-

ity of two users who conduct many transactions together to
move their activity off the underlying blockchain (Bitcoin)
and onto the Lightning Network in a private channel. Both
users fund the channel initially and are able at any point
to terminate the relationship and move their current bal-
ance in the channel back to the underlying blockchain. The
secure maintenance of this “bail-out” feature is enabled by
exchanging signed bail-out transactions that the other can
the sign and submit to the blockchain. When a payment
is made off-chain, not only are the off-chain channel bal-
ances updates, but also new bail-out transactions must be
exchanged and the old ones invalidated.

The invalidation of the old transactions is tricky since
nothing prevents a party from submitting the old bail-out
transaction. Protection arises from the design of these trans-
actions. Rather than paying both parties back immediately,
the submitter’s payback is delayed using the transaction
time-lock feature of Bitcoin. During that time, the other
party can take the entire channel’s value if it knows a par-
ticular secret created by the submitted. These secrets are
exchanged to invalidate the old bail-out transactions. With
the secrets exchanged, no one has an incentive to submit the
old bail-out transaction since doing so would allow the other
party to walk away with the entire amount of currency in the
channel. The cryptographic details are in [22]. Ethereum
side-chains are discussed in [24].

The Bitcoin basis of Lightning limits its enterprise appli-
cability, but the concept of low-overhead, high-performance
transactions between trusting (or at least partially trust-
ing) users is quite promising in enterprise settings. It allows
scale-up to transaction rates closer to the norm in OLTP
systems.

5.2 Loopring
The typical cryptocurrency exchange is a centralized ser-

vice in which users submit their private cryptographic keys
to the exchange and then the exchange can execute trades
on behalf on their clients. If such an exchange is hacked (and
several have been, often with major publicity in the media),
stolen keys enable the perpetrator to steal cryptocurrency.
Due to blockchain immutability, restitution is impossible.7

Loopring [29] is one example of trade-matching system
that enables smart-contract-based cross-chain trades with-
out users have to reveal their private keys to the exchange.
Such exchanges, called decentralized exchanges or, equiva-
lently, non-custodial exchanges, protect users by not requir-
ing them to disclose their private keys. Loopring enables
the creation of trade rings to fill submitted trade orders,

7Unless, of course, blockchain immutability is compromised
by a hard fork.

and the secure implementation of those trades. Several wal-
lets and exchanges are being constructed on this platform,
one example of which is Dolomite.8 Several other decen-
tralized exchanges are based on Loopring or on competing
platforms.

Enterprise blockchain databases may not need trading
features such as these, but the secure cross-chain trans-
action systems created here have the potential of forming
the foundation of interoperability between separately con-
trolled blockchains, without requiring the owners/operators
of those chains needing to build a trust relationship.

6. REVIEWING THE OPTIONS
Returning to the criteria we discussed in Section 2.2, we

see that the nature of governance and trust in the applica-
tion domain plays a dominate role in choosing an appropri-
ate blockchain solution. The willingness (or perhaps require-
ment) to have a centralized permissioning authority allows
greater flexibility in the consensus mechanism used. Mem-
bers of the blockchain, though approved by the permission-
ing authority, may nevertheless have some degree of mutual
distrust. If there is no trust whatsoever, certain consen-
sus mechanisms are immediately ruled out. However, where
some trust exists (e.g., each node has several others that it
trusts) it becomes possible to choose a possibly simpler or
more performant consensus mechanism. Trust has another
important influence on performance, even in systems with-
out any trust assumption. Some protocols (e.g. Algorand)
will perform better it situations where the expectation of
honesty is high (and thus the rate of Byzantine failure likely
to be low).

The range of performance options is substantial. At one
extreme is Bitcoin where finality for a transaction takes
about an hour. At the other extreme are highly controlled,
permissioned chains, where the ordering process is fast, suc-
cess occurs with very high probability, and time-to-finality
is on the same order and initial addition of a transaction
to the blockchain. In between these extremes are a variety
of improved versions of public blockchains (such as the re-
cent upgrades to Ethereum), the employment off off-chain
transactions (as in the case of Lightning), as well as newer
consensus protocols that provide strong security guarantees
(including from Sybil attacks), while offering the potential
for good performance (e.g. Algorand).

Beyond technical considerations, there are various non-
technical business decisions regarding the choice of a block-
chain solution:

• Maintenance and control of the underlying platform:
What is the consensus mechanism for software up-
dates? Does it follow the mechanism used for the
blockchain?

• Long-term stability of the underlying platform: Is there
strong reason to believe that the underlying chain (for
public blockchains) or the software used will continue
to be maintained?

• Resource contention, in the case of a public blockchain.

• Public sentiment regarding the platform: Unsavory
uses of a specific platform, though unrelated to the

8https://dolomite.io

8



enterprise, may create a negative public image in the
media that, though undeserved, represents a real cost.

• Evolution path: Is there a plan to move or a likeli-
hood to move towards a more (or less) permissioned
system, towards more (or less) trust, etc.? Several of
the consensus mechanisms we have discussed have per-
formance that may be influenced significantly by such
evolutions, as we have seen. Hyperledger’s ability to
allow chances to the consensus mechanism may be an
advantage in this regard.

7. CONCLUSION / FUTURE DIRECTION
Blockchain systems emerged from a strong assumption

about privacy, anonymity, trustlessless, and freedom from
all forms of central authority. The world’s financial systems
and business enterprises operate under much more stringent
contraints. The adaptation of blockchain technology to this
more constrained setting remains a work-in-progress both
technically and in terms of regulatory oversight. As a re-
sult, an enterprise developing a blockchain database faces
an environment much more fluid that even that of the early
days of database systems. Will one platform (or a small
number of platforms) emerge as a de-facto standard? Will
there instead be a vast number of options arising from com-
petition and/or a determination that the “one size fits all”
concept does not apply?

Research questions remain open in many areas, not only
the areas of consensus and performance on which we have
focused here. Data storage is prohibitively expensive on
many blockchains (notably Ethereum). Today’s solution is
decentralized, off-chain storage (such as Storj9 and Sia10),
but a linkage between a blockchain database and a relational
database would appear more promising to an enterprise if
proper transactional guarantees are provided.

While the exact future path is uncertain, the vast scope
of enterprise applications for blockchain databases (see a list
in [26]) suggests an exciting future for blockchain database
research.

Acknowledgement
The author would like to thank Luke Bernick, Masoomeh
Javidi Kishi, and Roberto Palmieri for many helpful com-
ments on an earlier draft.

8. REFERENCES
[1] N. Acheson. What is SegWit? Technical report,

Coindesk,
https://www.coindesk.com/information/what-is-
segwit,
2018.

[2] I. Allison. Ibm, Maersk finally sign up 2 big carriers
for shipping blockchain. Technical report, Coindesk,
https://www.coindesk.com/ibm-maersk-finally-sign-
up-2-big-carriers-for-shipping-blockchain,
2019.

[3] E. Androulaki, A. Barger, V. Bortnikov, C. Cachin,
K. Christidis, A. D. Caro, D. Enyeart, C. Ferris,
Y. Manevich, S. Muralidharan, C. Murthy, B. Nguyen,

9storj.io
10sia.tech

M. Sethi, G. Singh, K. Smith, A. Sorniotti,
C. Stathakopoulou, M. Vukolić, S. W. Cocco, and
J. Yellick. Hyperledger Fabric: A distributed
operating system for permissioned blockchains. In
Proc. Eurosys’18, April 2018.

[4] D. T. T. Anh, R. Liu, M. Zhang, G. Chen, B. C. Ooi,
and J. Wang. Untangling blockchain: A data
processing view of blockchain systems. IEEE
Transactions on Knowledge and Data Engineering,
30(7):1366–1385, July 2018.

[5] A. M. Antonopoulos and G. Wood. Mastering
Ethereum: Building Smart Contracts and DApps.
O’Reilly Media, 2018.

[6] M. Baudet, A. Ching, A. Chursin, G. Danezis,
F. Garillot, Z. Li, D. Malkhi, O. Naor, D. Perelman,
and A. Sonnino. State machine replication in the
Libra blockchain. Technical report, The Libra
Association, 2018.

[7] M. Ben-Or. Another advantage of free choice:
Completely asynchronous agreement protocols. In
Proc. 2nd ACM Symposium on Principles of
Distributed Systems, pages 27–30, August 1983.

[8] G. Bracha and S. Toueg. Asynchronous consensus and
broadcast protocols. J. ACM, 32(4):824–840, October
1985.

[9] M. Castro and B. Liskov. Practical byzantine fault
tolerance and proactive recovery. ACM Trans. on
Computer Systems, 20(4):398–461, Novemeber 2002.

[10] B. Chase and E. MacBrough. Analysis of the XRP
ledger consensus protocol. Technical report, Ripple
Research, 2018.

[11] T. T. A. Dinh, J. Wang, G. Chen, R. Liu, B. C. Ooi,
and K.-L. Tan. Blockbench: A framework for
analyzing private blockchains. In Proc. ACM
SIGMOD Conference on the Management of Data,
pages 1085–1100, 2017.

[12] M. J. Fischer, N. A. Lynch, and M. S. Patterson.
Impossibility of distributed consensus with one faulty
process. J. ACM, 32(2):374–382, October 1985.

[13] D. K. Gifford. Weighted voting for replicated data. In
Proc. 7th ACM Symposium on Operating System
Principles, pages 150–162, December 1979.

[14] Y. Gilad, R. Hemo, S. Micali, G. Vlachos, and
N. Zeldovich. Algorand: Scaling Byzantine agreements
for cryptocurrencies. In Proc. 26th ACM Symposium
on Operating Systems Principles, pages 51–68, March
2017.

[15] L. Lamport. The part-time parliament. ACM
Transactions on Computer Systems, 16(2):133–169,
May 1998.

[16] B. W. Lampson and H. E. Sturgis. Crash recovery in a
distributed data storage system. Technical report,
Xerox Palo Alto Research Center, 1979.

[17] D. Mazières. The Stellar consensus protocol: A
federated model for internet-level consensus. Technical
report, Stellar Development Foundation, 2016.

[18] S. Micali, M. O. Rabin, and S. P. Vadhan. Verifiable
random functions. In Proc. 40th IEEE Symposium on
Foundations of Computer Science, 1979.

[19] S. Nakomoto. Bitcoin: A peer-to-peer electronic cash
system. Technical report, Bitcoin.org, 2008.

9



[20] D. Ongaro and J. Ousterhout. In search of an
understandable consensus algorithm. In Proc.
USENIX Annual Technical Conference, pages
305–320, 2014.

[21] M. Pease, R. Shostak, and L. Lamport. Reaching
agreement in the presence of faults. J. ACM,
27(2):228–234, April 1980.

[22] J. Poon and T. Dryja. The Bitcoin Lightning
Network. Technical report, lightning.network, 2016.

[23] S. Popov. The tangle. Technical report, The Iota
Foundation, 2018.

[24] P. Robinson, D. Hyland-Wood, R. Saltini, S. Johnson,
and J. Brainard. Atomic crosschain transactions for
ethereum private sidechains. Technical report,
University of Queensland, 2019.

[25] A. Sharma, F. M. Schuhknecht, D. Agrawal, and
J. Dittrich. How to databasify a blockchain: the case
of Hyperledger Fabric. Technical report, Universität
Saarland, 2018.

[26] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts, 7th edition, chapter 26:
Blockchain Databases. In [27], 2020.

[27] A. Silberschatz, H. F. Korth, and S. Sudarshan.
Database System Concepts, 7th edition. McGraw Hill
Education, New York, NY, 2020.

[28] D. Skeen. Non-blocking commit protocols. In Proc.
ACM SIGMOD Conference on the Management of
Data, pages 133–142, 1981.

[29] D. Wang, J. Zhou, A. Wang, and M. Finestone.
Loopring: A decentralized token exchange protocol.
Technical report, loopring.org, 2018.

10


